Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

### **Electronic Supplementary Information**

## Increase the Molecular Length and Donor Strength to Boost Horizontal Dipole Orientation for High-efficiency OLEDs

Yi-Kuan Chen,<sup>a+</sup> Jayachandran Jayakumar,<sup>a+</sup> Chang-Lun Ko,<sup>c</sup> Wen-Yi Hung,<sup>c</sup> Tien-Lin Wu,<sup>\*,a</sup> Chien-Hong Cheng<sup>\*,ab</sup>

E-mail: <u>tlwu@mx.nthu.edu.tw</u> E-mail: chcheng@mx.nthu.edu.tw

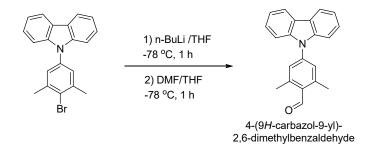
<sup>a</sup>Department of Chemistry, National Tsing Hua University No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
<sup>b</sup>Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
<sup>c</sup>Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan.

Keywords: molecular length, spiroacridine; TADF; horizontal dipole orientation; organic electronics; organic light-emitting diode

| Table of Contents                                     | Page No |
|-------------------------------------------------------|---------|
| General Information                                   | S-2     |
| Experimental                                          | S-3     |
| TD-DFT for singlet $(S_1)$ and triplet $(T_n)$ states | S-8     |
| Photophysical properties                              | S-12    |
| Thermal properties                                    | S-14    |
| Photoelectron spectral properties                     | S-15    |
| References                                            | S-18    |
| Spectral data of compounds                            | S-19    |
| ORTEP Diagram and X-ray data of emitters              | S-23    |
| Mass spectral analysis of TADF emitters               | S-28    |

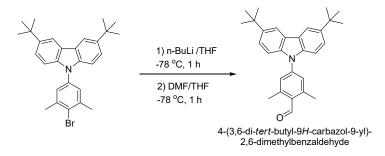
#### **General Information**

All chemicals and reagents were purchased from commercial providers without further purification. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were measured on a Varian INOVA-500 NMR spectrometer. Mass spectra were performed on JEOL AccuTOF GCx HRGCMS and JEOL JMS-700 HRMS. Elemental analyses were performed using an analyzer (Vario EL III CHN-OS Rapid, Elementar). UV-vis absorption spectra were recorded on a Hitachi U-3300 spectrophotometer. Fluorescence and Phosphorescence spectra were recorded on a Hitachi F-7000 fluorescence spectrophotometer. The absolute photoluminescence quantum efficiencies (PLQYs) of the doped films were determined using an integrating sphere under an N2 atmosphere. The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed on a thermal analyzer (2-HT, Mettler-Toledo) at a heating rate of 10 °C/min. from 30 °C to 800 °C under nitrogen. Transient PL decay measurements were done using an Edinburgh FLS 980 instrument. The HOMO levels of emitters in the neat film were determined by a Riken Keiki AC-2 photoelectron spectrometer with a UV source. The X-ray diffraction was carried out on an X-ray diffractometer (X8 APEX, Bruker). The measurement of horizontal dipoles ratios uses a 10 kHz, 355-nm Nd: YAG Laser as the continuous excitation source, a polarizer, and a spectrometer (Ocean Optics USB4000) to collect the PL spectra, and the results were fitted by SETFOS 4.5 software.


**Chemicals.** All starting materials, ammonium acetate, benzoylacetonitriles, and their derivatives were purchased from commercial suppliers unless otherwise mentioned.

**Theoretical Calculation.** Molecular geometry optimizations and electronic properties of these materials were carried out by using the Gaussian 09 program with density functional theory (DFT) and time-dependent DFT (TD-DFT for S<sub>1</sub> and T<sub>n</sub> states) calculations in which the Perdew-Burke-Ernzerhof (PBE0) hybrid exchange-correlation functional with the 6-31G(d) basis set was used. <sup>1</sup>, <sup>2</sup> The molecular orbitals were visualized by Gaussview 5.0 software. All calculations were performed in the gas phase.

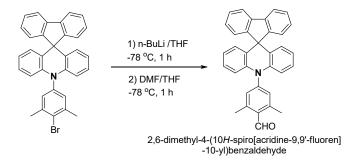
## Experimental


Syntheses of starting materials.

Synthesis of 4-(9*H*-carbazol-9-yl)-2,6-dimethylbenzaldehyde:



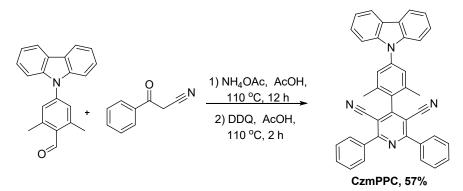
n-Butyllithium (1.7 mL, 4.3 mmol) was added dropwise to a solution of 9-(4-bromo-3,5dimethylphenyl)-9*H*-carbazole (1.0 g, 2.9 mmol) in anhydrous THF (19 mL, 0.15 M) and remained at -78 °C for 1 h. Anhydrous DMF (0.6 g, 8.7 mmol) was slowly added and kept at -78 °C for another 1 h. After overnight reaction at room temperature, the mixture was extracted with ethylacetate/water, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and treated with reduced pressure to remove the solvent. The crude product was purified by column chromatography using ethyl acetate/hexane (1:19, v/v) as eluent to give the desired product as yellow solid (0.7 g, yield: 80 %). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 10.67 (s, 1H), 8.12 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.5 Hz, 2H), 7.42 (t, *J* = 8.0 Hz, 2H), 7.34 (s, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 2.72 (s, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>,  $\delta$ ): 192.41, 143.51, 141.58, 140.11, 130.91, 127.17, 126.13, 123.79, 120.52, 120.43, 109.92, 20.80.


Synthesis of 4-(3,6-di-tert-butyl-9H-carbazol-9-yl)-2,6-dimethylbenzaldehyde:



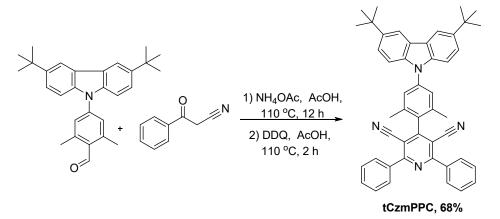
4-(3,6-di-tert-butyl-9*H*-carbazol-9-yl)-2,6-dimethylbenzaldehyde was synthesized by a similar procedure as 4-(9*H*-carbazol-9-yl)-2,6-dimethylbenzaldehyde. n-Butyllithium (1.3 mL, 3.1 mmol) was added dropwise to a solution of 9-(4-bromo-3,5-dimethylphenyl)-3,6-di-tert-butyl-9*H*-

carbazole (1.0 g, 2.2 mmol) in anhydrous THF (14 mL, 0.15 M) at -78 °C for 1 h. Anhydrous DMF (0.5 g, 6.5 mmol) was slowly added and kept at -78 °C for another 1 h. After overnight reaction at room temperature, the mixture was extracted with ethylacetate/water, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and reduced pressure to remove the solvent. The crude product was purified by column chromatography using ethyl acetate/hexane (1:19, v/v) as eluent to give the desired product as yellow solid (0.6 g, yield: 67 %). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 10.66 (s, 1H), 8.12 (s, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.33 (s, 2H), 2.71 (s, 6H), 1.45 (s, 18H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>,  $\delta$ ): 192.34, 143.56, 143.47, 142.13, 138.38, 130.39, 126.58, 123.87, 123.78, 116.37, 109.44, 34.75, 31.95, 20.84.





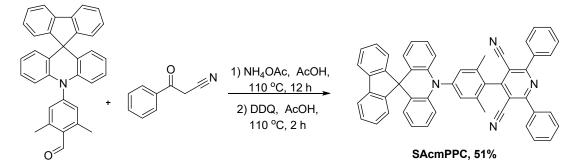

2,6-Dimethyl-4-(10*H*-spiro[acridine-9,9'-fluoren]-10-yl)benzaldehyde was synthesized by a similar procedure as 4-(9*H*-carbazol-9-yl)-2,6-dimethylbenzaldehyde. n-Butyllithium (1.2 mL, 2.9 mmol) was added dropwise to a solution of 10-(4-bromo-3,5-dimethylphenyl)-10*H*-spiro[acridine-9,9'-fluorene] (1.0 g, 1.9 mmol) in anhydrous THF (24 mL, 0.08 M) at -78 °C for 1 h. Anhydrous DMF (4.3 g, 5.7 mmol) was slowly added and kept at -78 °C for another 1 h. After overnight reaction at room temperature, the mixture was extracted with ethylacetate/water, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and reduced pressure to remove the solvent. The crude product was purified by column chromatography using ethyl acetate/hexane (1:19, v/v) as eluent to give the desired product as yellow solid (0.6 g, yield: 67 %). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 10.72 (s, 1H), 7.77 (d, *J* = 7.5 Hz, 2H), 7.38-7.33 (m, 4H), 7.23-7.21 (m, 4H), 6.90 (t, *J* = 7.5 Hz, 2H), 6.55 (t, *J* = 7.5 Hz, 2H), 6.38 (d, *J* = 7.5 Hz, 2H), 6.34 (d, *J* = 7.5 Hz, 2H), 2.72 (s, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>,  $\delta$ ): 192.87, 156.52, 144.96, 144.44, 140.59, 139.19, 132.40, 132.13, 128.37, 127.96, 127.62, 127.23, 125.72, 124.80, 120.86, 119.91, 114.46, 20.67.


Synthesis of 4-(4-(9H-carbazol-9-yl)-2,6-dimethylphenyl)-2,6-diphenylpyridine-3,5-

#### dicarbonitrile (CzmPPC):



To a mixture of 4-(9*H*-carbazol-9-yl)-2,6-dimethylbenzaldehyde (0.7 g, 2.2 mmol), benzoyl acetonitrile (0.8 g, 5.6 mmol) and ammonium acetate (0.4 g, 5.6 mmol), acetic acid (7 mL) were added and refluxed for 12 h. After cooling to room temperature, a homogeneous solution of DDQ (1.4 g, 6.4 mmol) was added and stirred for 2 h at 110 °C. The reaction was quenched with water, and the mixture was filtered. The crude product was purified by column chromatography using dichloromethane/hexane (1:1, v/v) as eluent to give the desired product as yellow solid (1.5 g, yield: 57 % and the overall yield: 46%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.19-8.15 (m, 6H), 7.62-7.61 (m, 6H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.51 (s, 2H), 7.46 (t, *J* = 8.0 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 2.31 (s, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>,  $\delta$ ): 163.12, 160.71, 140.56, 139.36, 137.12, 136.06, 132.50, 131.68, 129.52, 128.91, 126.75, 126.04, 123.50, 120.28, 120.15, 115.05, 110.01, 106.45, 20.29. HRMS (FD) m/z: [M+] calcd. for C<sub>39</sub>H<sub>26</sub>N<sub>4</sub>: C 85.07, H 4.76, N 10.17 found: C 85.17, H 4.51, N 10.03.


Synthesis of 4-(4-(3,6-di-tert-butyl-9*H*-carbazol-9-yl)-2,6-dimethylphenyl)-2,6diphenylpyridine-3,5-dicarbonitrile (tCzmPPC):



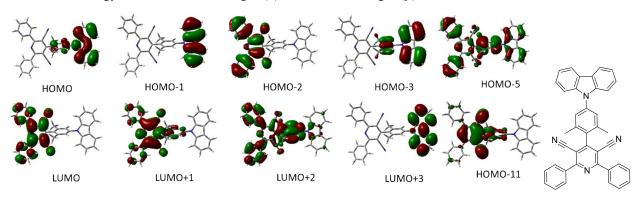
To a mixture of 4-(3,6-di-tert-butyl-9H-carbazol-9-yl)-2,6-dimethylbenzaldehyde (0.2 g, 0.5

mmol), benzoylacetonitrile (0.2 g, 1.2 mmol), ammonium acetate (0.1 g, 1.5 mmol), and acetic acid (5 mL) were added and refluxed for 12 h. After cooling to room temperature, a homogeneous solution of DDQ (0.2 g, 2.5 mmol) was added and stirred for 2 h at 110 °C. The reaction was quenched with water, and the mixture was filtered. The crude product was purified by column chromatography using dichloromethane/hexane (1:1, v/v) as eluent to give the desired product as orange-yellow solid (0.4 g, yield: 68 % and the overall yield: 46%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.15-8.13 (m, 6H), 7.60 (m, 6H), 7.48 (m, 6H), 2.27 (s, 6H), 1.46 (s, 18H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>,  $\delta$ ): 163.10, 160.84, 143.10, 139.89, 138.89, 136.92, 136.11, 131.90, 131.65, 129.53, 128.91, 126.24, 123.69, 123.54, 116.20, 115.06, 109.49, 106.57, 34.73, 31.99, 20.29. HRMS (EI) m/z: [M+] calcd. for C<sub>47</sub>H<sub>42</sub>N<sub>4</sub>, 662.3404; found, 662.3405. Elemental Anal. calcd. for C<sub>47</sub>H<sub>44</sub>N<sub>4</sub>: C 85.16, H 6.39, N 8.45 found: C 85.56, H 5.98, N 8.51.

Synthesis of 4-(2,6-dimethyl-4-(10*H*-spiro[acridine-9,9'-fluoren]-10-yl)phenyl)-2,6diphenylpyridine-3,5-dicarbonitrile (SAcmPPC):



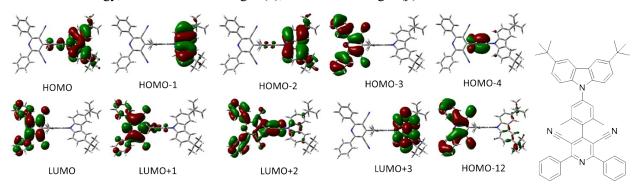
To a mixture of 2,6-dimethyl-4-(10*H*-spiro[acridine-9,9'-fluoren]-10-yl)benzaldehyde (0.2 g, 0.4 mmol), benzoylacetonitrile (0.2 g, 1.1 mmol), ammonium acetate (0.1 g, 1.3 mmol), and acetic acid (6 mL) were added and refluxed for 12 h. After cooling to room temperature, a homogeneous solution of DDQ (1.0 g, 0.2 mmol) was added and stirred for 2 h at 110 °C. The reaction was quenched with water, and the mixture was filtered. The crude product was purified by column chromatography using dichloromethane/hexane (1:1, v/v) as eluent to give the desired product as orange-yellow solid (0.3 g, yield: 51 % and the overall yield: 34%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>,  $\delta$ ): 8.19 (d, *J* = 7.5 Hz, 4H), 7.79 (d, *J* = 7.5 Hz, 2H), 7.62-7.61 (m, 6H), 7.43-7.42 (m, 4H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.26 (d, *J* = 7.5 Hz, 2H), 6.98 (t, *J* = 7.5 Hz, 2H), 6.58 (t, *J* = 7.5 Hz, 2H), 6.49 (d, *J* = 8.5 Hz, 2H), 6.41 (d, *J* = 8.0 Hz, 2H), 2.33 (s, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>,  $\delta$ ): 163.09, 160.88, 156.52, 142.69, 140.93, 139.21, 138.48, 136.07, 133.97, 131.74, 131.10, 129.55, 129.53, 128.95, 128.35, 127.73, 127.57, 127.48, 125.77, 124.75, 120.76, 119.88, 115.06, 114.67,


106.37, 20.27. HRMS (EI) m/z: [M+] calcd. for C<sub>52</sub>H<sub>34</sub>N<sub>4</sub>, 714.2778; found, 714.2773. Elemental Anal. calcd. for C<sub>52</sub>H<sub>34</sub>N<sub>4</sub>: C 87.37, H 4.79, N 7.84 found: C 87.56, H 4.38, N 7.91.

**OLEDs Fabrication and Measurement.** Organic materials used in device fabrication were purified by sublimation. Devices were fabricated by vacuum deposition onto pre-coated ITO glass with a sheet resistance of 25  $\Omega$ /square at a pressure lower than 10<sup>-6</sup> Torr. Organic materials were deposited at the rate of 0.5~1.2 Å s<sup>-1</sup>. LiF and Al were deposited at the rate of 0.1 Å s<sup>-1</sup> and 3~10 Å s<sup>-1</sup>, respectively. The rest of the procedures is similar to the reported method. Current-voltage-luminance (I-V-L) characterization and electroluminescent spectra were measured and recorded by using a programmable source meter (2400, Keithley) and a spectroradiometer (CS2000A, Konica Minolta). The Lambertian emission assumption determined external quantum efficiencies and power efficiencies. All devices were encapsulated in a glove box. Then, the EL measurements were performed at room temperature.

| State          | Excitatio                                                                                                            |                                                         | $E_{\rm cal}({\rm eV})^{\rm a}$ | $\lambda_{cal} (nm)^b$ | $f^{c}$ |
|----------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------|------------------------|---------|
|                | Singlet Excite                                                                                                       | d States                                                |                                 |                        |         |
| $\mathbf{S}_1$ | HOMO→LUMO                                                                                                            | 0.70486                                                 | 2.7164                          | 456.43                 | 0.0003  |
| $S_2$          | HOMO→LUMO+1                                                                                                          | 0.69991                                                 | 3.0681                          | 404.15                 | 0.0407  |
| $S_3$          | HOMO-1→LUMO                                                                                                          | 0.70698                                                 | 3.1679                          | 391.37                 | 0.0000  |
| $S_4$          | HOMO-1→ LUMO+1                                                                                                       | 0.70514                                                 | 3.5509                          | 349.17                 | 0.0001  |
| S <sub>5</sub> | HOMO-10→LUMO<br>HOMO-2→LUMO<br>HOMO→LUMO+2                                                                           | 0.16488<br>0.64362<br>0.19125                           | 3.9962                          | 310.25                 | 0.5420  |
|                | Triplet Excite                                                                                                       | d States                                                |                                 |                        |         |
| T <sub>1</sub> | HOMO-10→LUMO<br>HOMO-11→LUMO+1<br>HOMO-6→LUMO+1<br>HOMO-5→LUMO+1<br>HOMO-2→LUMO                                      | -0.10565<br>-0.15569<br>-0.10565<br>-0.12425<br>0.61016 | 2.6481                          | 468.20                 | 0.0000  |
| $T_2$          | HOMO→LUMO                                                                                                            | 0.70374                                                 | 2.7106                          | 457.41                 | 0.0000  |
| Τ <sub>3</sub> | HOMO-5 $\rightarrow$ LUMO+1<br>HOMO-5 $\rightarrow$ LUMO+2<br>HOMO $\rightarrow$ LUMO+1<br>HOMO $\rightarrow$ LUMO+2 | -0.10785<br>-0.11246<br>0.63431<br>-0.18221             | 2.7136                          | 415.80                 | 0.0000  |

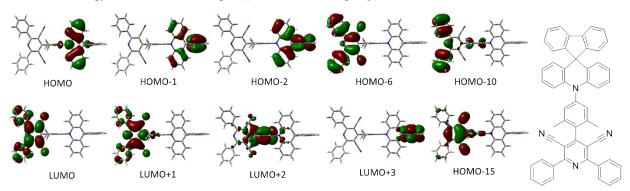
**Table S1**. Singlet and triplet excitation states, and transition configurations of CzmPPC by TD-DFT at the PBE0/6-31G (d).

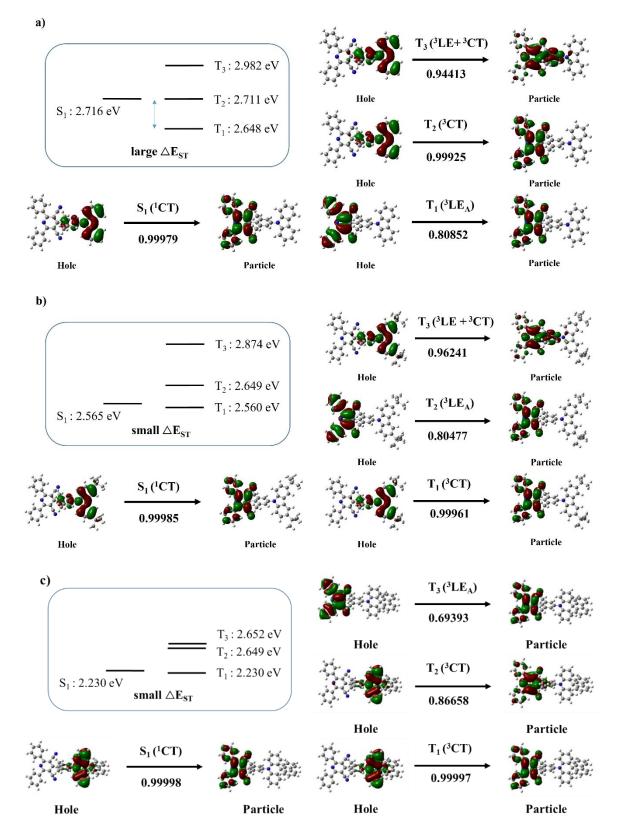

<sup>a</sup>Excitation energy, <sup>b</sup>excitation wavelength ( $\lambda$ ), <sup>c</sup>oscillator strength (f).



| State          | Excitatio                                                                                                                                                                  |                                                                   | $E_{\rm cal}~({\rm eV})^{\rm a}$ | $\lambda_{cal} (nm)^{b}$ | $f^{c}$ |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------|--------------------------|---------|
|                | Singlet Excite                                                                                                                                                             | d States                                                          |                                  |                          |         |
| $S_1$          | HOMO→LUMO                                                                                                                                                                  | 0.70503                                                           | 2.5647                           | 483.43                   | 0.0002  |
| $S_2$          | HOMO→LUMO+1                                                                                                                                                                | 0.70064                                                           | 2.9323                           | 422.83                   | 0.0367  |
| $S_3$          | HOMO-1→LUMO                                                                                                                                                                | 0.70694                                                           | 3.0767                           | 402.97                   | 0.0000  |
| $S_4$          | HOMO-1→LUMO                                                                                                                                                                | 0.70538                                                           | 3.4732                           | 356.97                   | 0.0002  |
| S <sub>5</sub> | HOMO-4 $\rightarrow$ LUMO<br>HOMO-3 $\rightarrow$ LUMO<br>HOMO-2 $\rightarrow$ LUMO<br>HOMO $\rightarrow$ LUMO+2<br>HOMO $\rightarrow$ LUMO+4<br>HOMO $\rightarrow$ LUMO+3 | -0.11180<br>0.46940<br>-0.14191<br>0. 43835<br>0.19648<br>0.16961 | 3.9627                           | 312.88                   | 0.6435  |
|                | Triplet Excited                                                                                                                                                            | 1 States                                                          |                                  |                          |         |
| $T_1$          | HOMO→LUMO                                                                                                                                                                  | 0.70433                                                           | 2.5598                           | 484.34                   | 0.0000  |
| T <sub>2</sub> | HOMO-12→LUMO<br>HOMO-11→LUMO+1<br>HOMO-6→LUMO+1<br>HOMO-3→LUMO                                                                                                             | -0.13931<br>-0.15320<br>-0.13181<br>0.61239                       | 2.6491                           | 468.02                   | 0.0000  |
| T 3            | HOMO→LUMO+1<br>HOMO→LUMO+2                                                                                                                                                 | 0.66047<br>-0.15072                                               | 2.8744                           | 431.34                   | 0.0000  |

**Table S2**. Singlet and triplet excitation states, and transition configurations of the tCzmPPC by TD-DFT at the PBE0/6-31G (d).


<sup>a</sup>Excitation energy, <sup>b</sup>excitation wavelength ( $\lambda$ ), <sup>c</sup>oscillator strength (f).




| State          | Excitatio                                                                                                                                            | n                                                     | $E_{\rm cal}({\rm eV})^{\rm a}$ | $\lambda_{cal} (nm)^{b}$ | $f^{c}$ |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------|--------------------------|---------|
|                | Singlet Excited                                                                                                                                      | 1 States                                              |                                 |                          |         |
| $S_1$          | HOMO→LUMO                                                                                                                                            | 0.70687                                               | 2.2298                          | 556.04                   | 0.0000  |
| $S_2$          | HOMO→LUMO+1                                                                                                                                          | 0.70588                                               | 2.6504                          | 467.79                   | 0.0007  |
| S <sub>3</sub> | HOMO-1→LUMO                                                                                                                                          | 0.70597                                               | 3.0797                          | 402.59                   | 0.0000  |
| $S_4$          | HOMO→LUMO+2                                                                                                                                          | 0.69721                                               | 3.4932                          | 354.93                   | 0.0012  |
| $S_5$          | HOMO-1→LUMO+1                                                                                                                                        | 0.70528                                               | 3.5242                          | 351.80                   | 0.0000  |
|                | Triplet Excited                                                                                                                                      | l States                                              |                                 |                          |         |
| T <sub>1</sub> | HOMO→LUMO                                                                                                                                            | 0.70685                                               | 2.2297                          | 556.07                   | 0.0000  |
| Τ <sub>2</sub> | HOMO-6→LUMO<br>HOMO→LUMO+1                                                                                                                           | 0.23774<br>0.65098                                    | 2.6488                          | 468.07                   | 0.0000  |
|                |                                                                                                                                                      |                                                       |                                 |                          |         |
| Τ <sub>3</sub> | HOMO-16 $\rightarrow$ LUMO<br>HOMO-15 $\rightarrow$ LUMO+1<br>HOMO-10 $\rightarrow$ LUMO+1<br>HOMO-6 $\rightarrow$ LUMO<br>HOMO $\rightarrow$ LUMO+1 | 0.13377<br>0.14069<br>-0.14454<br>0.56774<br>-0.27275 | 2.6518                          | 467.55                   | 0.0000  |

**Table S3**. Singlet and triplet excitation states, and transition configurations of the SAcmPPC by TD-DFT at the PBE0/6-31G (d).

<sup>a</sup>Excitation energy, <sup>b</sup>excitation wavelength ( $\lambda$ ), <sup>c</sup>oscillator strength (f).





**Figure S1.** Natural transition orbitals characteristics of  $S_1$  and  $T_n$  excited states of a) CzmPPC, b) tCzmPPC, and c) SAcmPPC.

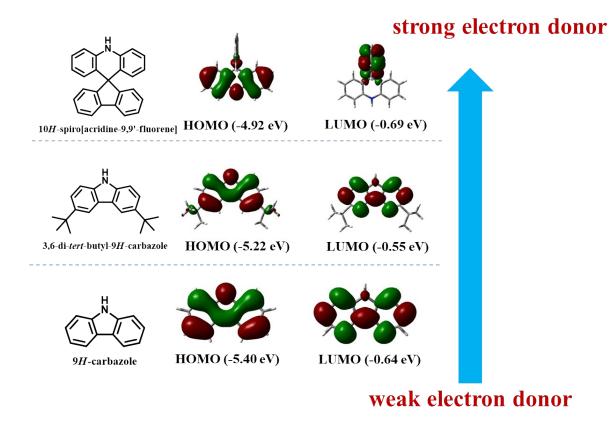
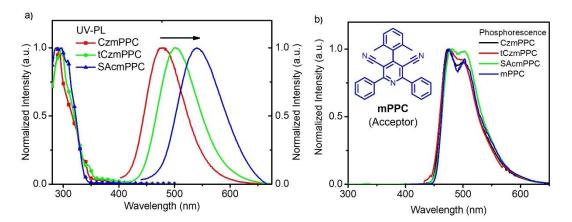
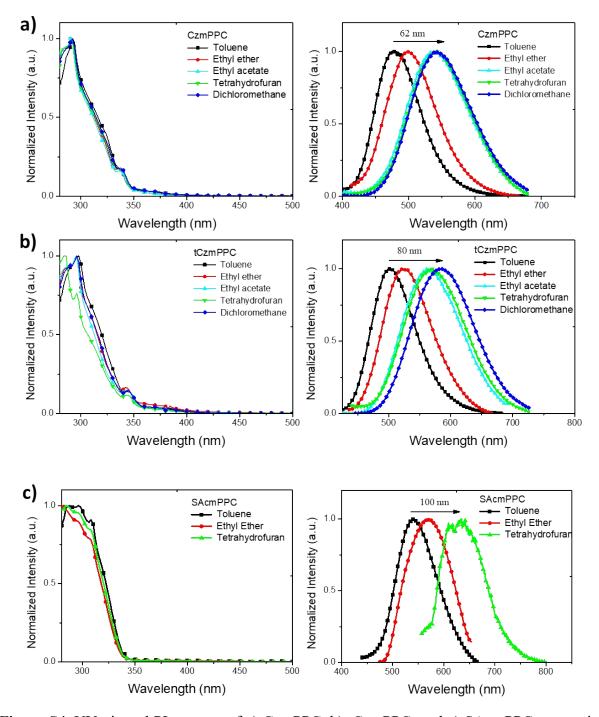





Figure S2. The chemical structures and the optimized geometries with molecular orbitals of spiroacridine, *tert*-butyl-carbazole, and carbazole.



#### **Photophysical properties**

**Figure S3.** a) UV-vis spectra and PL spectra of CzmPPC, tCzmPPC, and SAcmPPC at RT b) Phosphorescence spectra of CzmPPC, tCzmPPC, SAcmPPC and the acceptor (mPPC) at LT in toluene (10<sup>-5</sup> M).



**Figure S4.** UV-vis and PL-spectra of a) CzmPPC, b) tCzmPPC, and c) SAcmPPC, respectively, in various solvents at RT (10<sup>-5</sup> M).

| emitter | $S_1 (eV)^{a/b}$ | $T_1 (eV)^{c/d}$ | E <sub>g</sub> (eV) <sup>e</sup> | $T_m (^{\circ}\mathrm{C})^{\mathrm{f}}$ |
|---------|------------------|------------------|----------------------------------|-----------------------------------------|
| CzmPPC  | 2.92/2.95        | 2.75/2.67        | 3.02                             | 279                                     |
| tCzmPPC | 2.80/2.82        | 2.77/2.70        | 2.97                             | 339                                     |
| SAcmPPC | 2.68/2.73        | 2.73/2.68        | 2.79                             | 334                                     |

Table S4. The photophysical and thermal data of these three emitters.

Singlet energy determined at the onset point of the room temperature fluorescence spectra <sup>a</sup>in toluene solution and <sup>b</sup>of doped films (mCPCN: 10wt% emitter). Triplet energy determined at the onset of the low temperature phosphorescence spectra <sup>c</sup>in toluene solution and <sup>d</sup>of doped films. <sup>c</sup>The optical bandgap was determined from the onset point of absorption spectra. <sup>f</sup>Melting temperature.

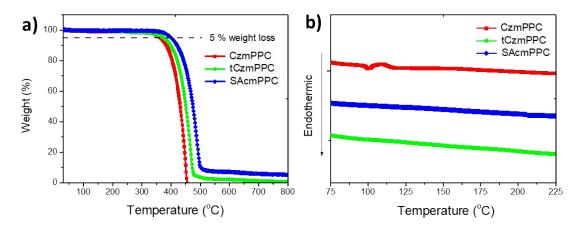



Figure S5. a) TGA curves and b) DSC curves of compounds CzmPPC, tCzmPPC, and SAcmPPC

## **Photoelectron spectral properties**

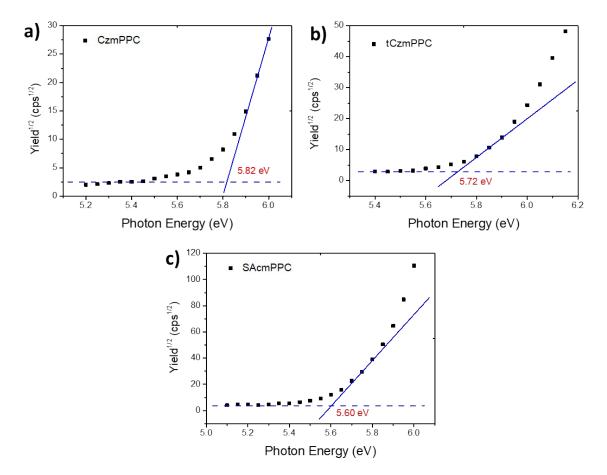
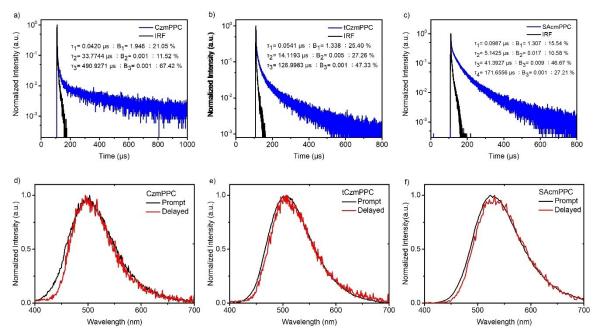




Figure S6. Photoelectron spectroscopy of neat film a) CzmPPC, b) tCzmPPC, and c) SAcmPPC.



**Figure S7.** The prompt and delayed components in doped films (10% PPC compounds in mCPCN films) of a) CzmPPC, b) tCzmPPC, and c) SAcmPPC from time-resolved PL spectra. The prompt and delayed emission (gating time: 10 µs) spectra in doped films of d) CzmPPC, e) tCzmPPC, and f) SAcmPPC.

Table S5. Summarized transient-PL data and the rate constants of TADF dopants.

| emitter <sup>a</sup> | $\Delta E_{\rm ST} ({\rm eV})$ | $	au_{PF}\left(ns ight)$ | $\tau_{DF}\left(\mu s\right)$ | $\Phi_{\mathrm{P}}\left(\% ight)$ | $\Phi_{\mathrm{D}}$ (%) | $k_{ m r}  (10^6 \ { m s}^{-1})^b$ | $k_{\rm ISC}  (10^7  { m s}^{-1})^c$ | $k_{ m RISC}  (10^4 \ { m s}^{-1})^d$ |
|----------------------|--------------------------------|--------------------------|-------------------------------|-----------------------------------|-------------------------|------------------------------------|--------------------------------------|---------------------------------------|
| CzmPPC               | 0.28                           | 42.0                     | 461.5                         | 19.8                              | 72.5                    | 4.7                                | 1.9                                  | 1.0                                   |
| tCzmPPC              | 0.12                           | 54.1                     | 86.7                          | 24.7                              | 72.4                    | 4.6                                | 1.4                                  | 4.5                                   |
| SAcmPPC              | 0.05                           | 98.7                     | 71.8                          | 15.4                              | 84.2                    | 1.6                                | 0.9                                  | 9.0                                   |

<sup>*a*</sup>10% PPC compounds measured in mCPCN film (20 nm) at 300 K. <sup>*b*</sup> Rate constant of fluorescence radiative decay:  $k_r = \Phi_P / \tau_{PF}$ . <sup>*c*</sup> Rate constant of ISC:  $k_{ISC} = (1 - \Phi_P) / \tau_{PF}$ . <sup>*d*</sup> Rate constant of RISC:  $k_{RISC} = \tau_{DF} / (k_{ISC} \cdot \tau_{PF} \cdot \tau_{DF} \cdot \Phi_P)$ .

| 1 abic 50.1          | i nume rese             |                           | fond i L.                                       |                           |                   |                           |                        |                           |                                                    |
|----------------------|-------------------------|---------------------------|-------------------------------------------------|---------------------------|-------------------|---------------------------|------------------------|---------------------------|----------------------------------------------------|
| emitter <sup>b</sup> | $	au_1 = 	au_{PF}$ (µs) | B <sub>1</sub><br>(value) | $\begin{array}{c} \tau_2 \ (\mu s) \end{array}$ | B <sub>2</sub><br>(value) | $	au_3 \ (\mu s)$ | B <sub>3</sub><br>(value) | τ <sub>4</sub><br>(μs) | B <sub>4</sub><br>(value) | $	au_{\mathrm{av}}{}^{c} = 	au_{\mathrm{DF}}$ (µs) |
| CzmPPC               | 42.0                    | 1.946                     | 33.8                                            | 0.001                     | 490.9             | 0.001                     | -                      | -                         | 461.5                                              |
| tCzmPPC              | 54.1                    | 1.338                     | 14.1                                            | 0.005                     | 127.0             | 0.001                     | -                      | -                         | 86.7                                               |
| SAcmPPC              | 98.7                    | 1.307                     | 5.1                                             | 0.017                     | 41.4              | 0.009                     | 171.7                  | 0.001                     | 71.8                                               |

Table S6. Fitting results<sup>a</sup> of transient-PL.

<sup>*a*</sup>Fitting method:  $R(t) = B_1 e^{(-t/\tau_1)} + B_2 e^{(-t/\tau_2)} + B_3 e^{(-t/\tau_3)} + B_4 e^{(-t/\tau_4)} \cdot b_1 0\%$  PPC compounds measured in mCPCN film (20 nm) at 300 K.  $c_{\tau_{av}} = \frac{\left[\sum B_i \tau_i^2\right]}{\left[\sum B_i \tau_i\right]}$ , where  $B_i$  and  $\tau_i$  are not included.

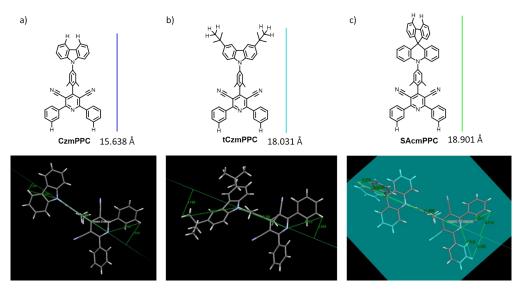
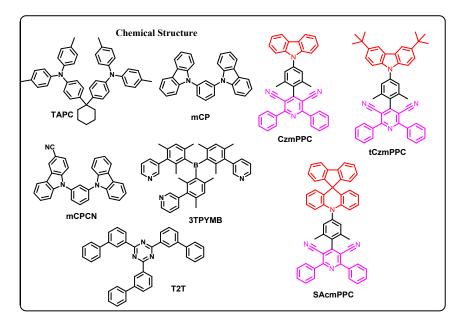
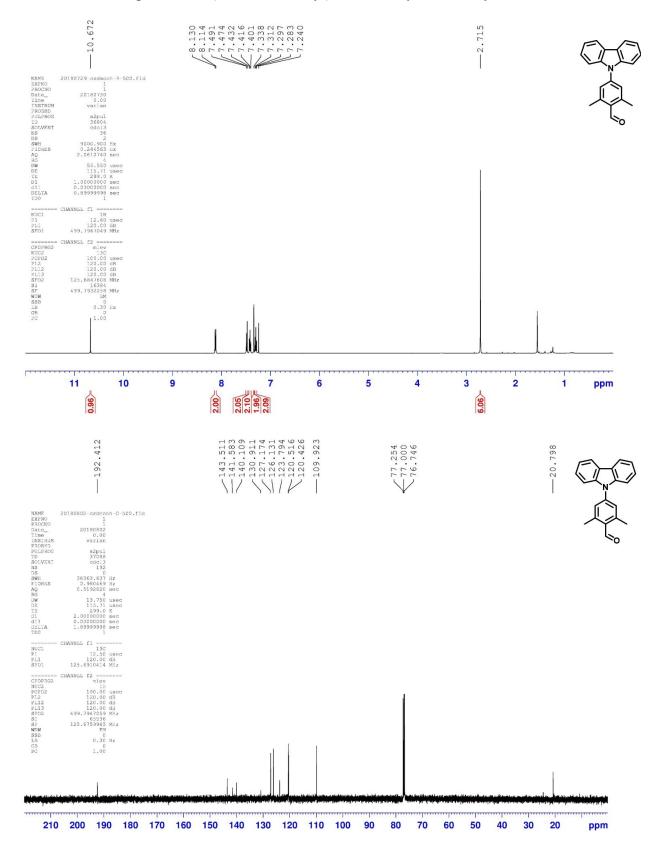
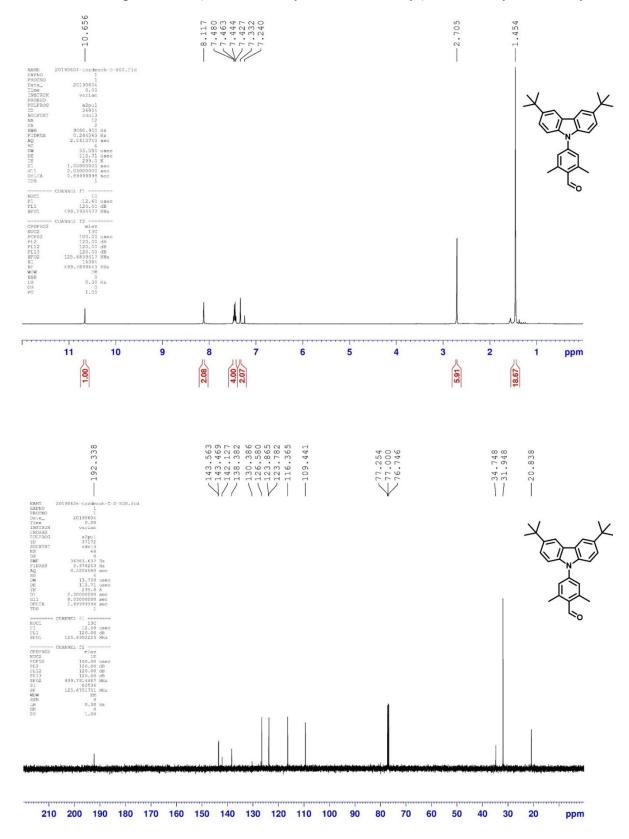
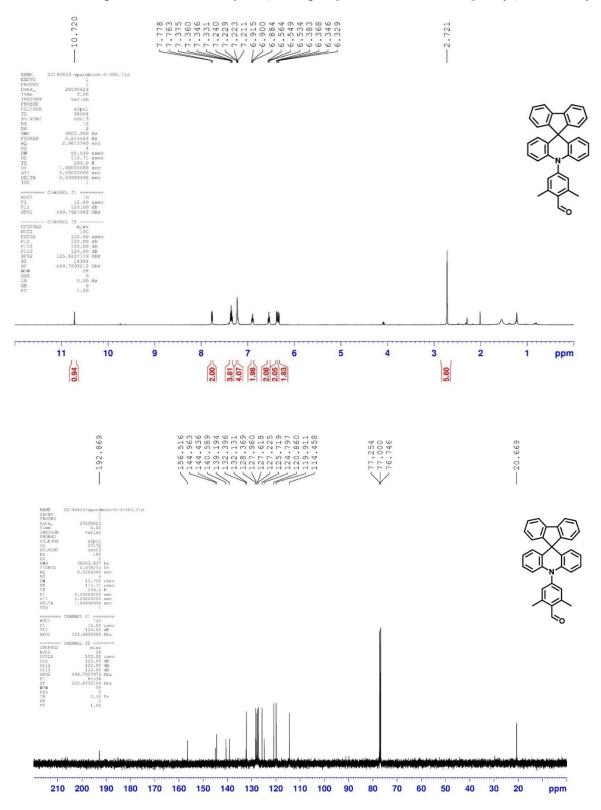



Figure S8. Molecular lengths from XRD for a) CzmPPC, b) tCzmPPC, and c) SAcmPPC, respectively. We measured the lenghs from the distance of horizontal projection of outside hydrogen atoms to the central xylene plane.

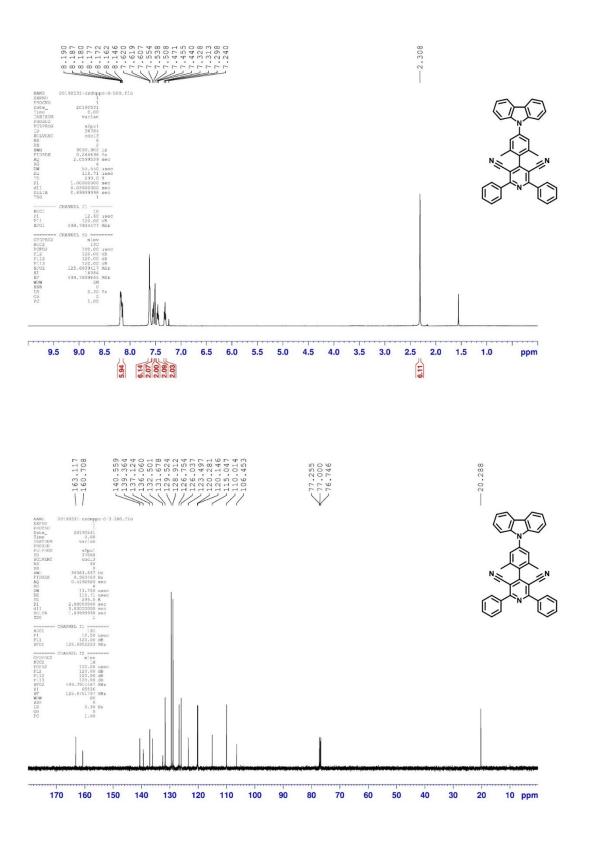


Figure S9. Chemical structures of the materials used in the device fabrication.

## References

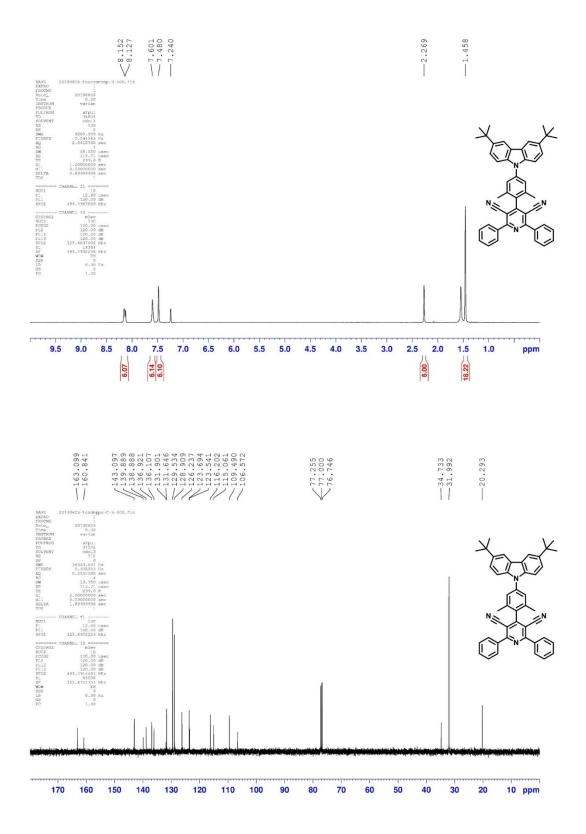

[1] A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys 125 (2006) 224106.
[2] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys 132 (2010) 154104.



<sup>1</sup>H and <sup>13</sup>C NMR spectra of 4-(9*H*-carbazol-9-yl)-2,6-dimethylbenzaldehyde.

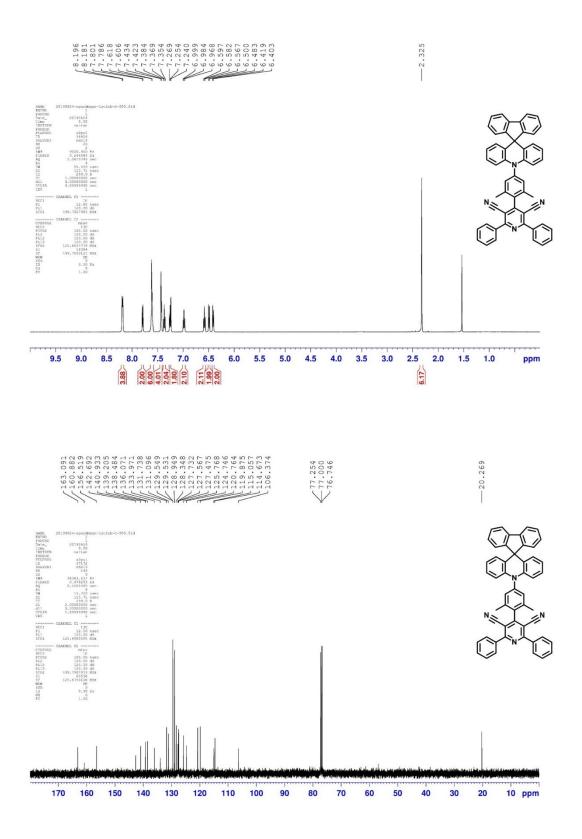



<sup>1</sup>H and <sup>13</sup>C NMR spectra of 4-(3,6-di-*tert*-butyl-9*H*-carbazol-9-yl)-2,6-dimethylbenzaldehyde.




<sup>1</sup>H and <sup>13</sup>C NMR spectra of 2,6-dimethyl-4-(10*H*-spiro[acridine-9,9'-fluoren]-10-yl)benzaldehyde.

<sup>1</sup>H and <sup>13</sup>C NMR spectra of 4-(4-(9*H*-carbazol-9-yl)-2,6-dimethylphenyl)-2,6-diphenylpyridine-3,5-dicarbonitrile (CzmPPC).




<sup>1</sup>H and <sup>13</sup>C NMR spectra of 4-(4-(3,6-di-tert-butyl-9*H*-carbazol-9-yl)-2,6-dimethylphenyl)-2,6-diphenylpyridine-3,5-dicarbonitrile (tCzmPPC).



S23

<sup>1</sup>H and <sup>13</sup>C NMR spectra of 4-(2,6-dimethyl-4-(10*H*-spiro[acridine-9,9'-fluoren]-10-yl)phenyl)-2,6-diphenylpyridine-3,5-dicarbonitrile (SAcmPPC).



X-ray crystallographic analysis:

**General Crystal Growing Conditions**: X-ray quality single crystals of **CzmPPC**, **tCzmPPC** and **SAcmPPC**, were collected from the sublimed tube after cooling down to room temperature (heated at various temperatures by slow evaporation under pressure).

ORTEP diagram of compound CzmPPC (CCDC 2144158)




 Table S5. Crystal data and structure refinement for 190441lt a pl.

| Identification code  | 190441lt_a_pl   |        |
|----------------------|-----------------|--------|
| Empirical formula    | C37 H24 N4      |        |
| Formula weight       | 524.60          |        |
| Temperature          | 296(2) K        |        |
| Wavelength           | 0.71073 Å       |        |
| Crystal system       | Monoclinic      |        |
| Space group          | I2/a            |        |
| Unit cell dimensions | a = 8.5539(5) Å | □=90°. |

|                                          | b = 16.6478(9) Å                   | $\Box = 90.721(4)^{\circ}.$ |
|------------------------------------------|------------------------------------|-----------------------------|
|                                          | c = 18.5307(10)  Å                 | $\Box = 90^{\circ}.$        |
| Volume                                   | 2638.6(3) Å <sup>3</sup>           |                             |
| Ζ                                        | 4                                  |                             |
| Density (calculated)                     | 1.321 Mg/m <sup>3</sup>            |                             |
| Absorption coefficient                   | 0.079 mm <sup>-1</sup>             |                             |
| F(000)                                   | 1096                               |                             |
| Crystal size                             | 0.22 x 0.20 x 0.20 mm <sup>3</sup> |                             |
| Theta range for data collection          | 1.644 to 26.692°.                  |                             |
| Index ranges                             | -10<=h<=10, -20<=k<=20, -2         | 23<=1<=23                   |
| Reflections collected                    | 20090                              |                             |
| Independent reflections                  | 2744 [R(int) = 0.0376]             |                             |
| Completeness to theta = $25.242^{\circ}$ | 100.0 %                            |                             |
| Absorption correction                    | Semi-empirical from equivale       | ents                        |
| Max. and min. transmission               | 0.7454 and 0.6739                  |                             |
| Refinement method                        | Full-matrix least-squares on F     | 52                          |
| Data / restraints / parameters           | 2744 / 0 / 188                     |                             |
| Goodness-of-fit on F <sup>2</sup>        | 1.102                              |                             |
| Final R indices [I>2sigma(I)]            | R1 = 0.0529, wR2 = 0.1237          |                             |
| R indices (all data)                     | R1 = 0.0607, wR2 = 0.1292          |                             |
| Extinction coefficient                   | n/a                                |                             |
| Largest diff. peak and hole              | 0.220 and -0.230 e.Å <sup>-3</sup> |                             |

ORTEP diagram of compound tCzmPPC (CCDC 2144160)

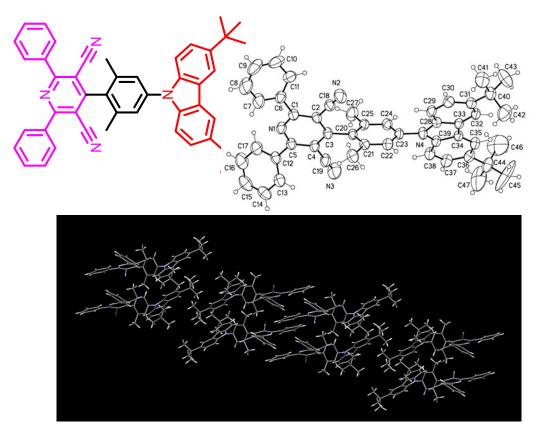
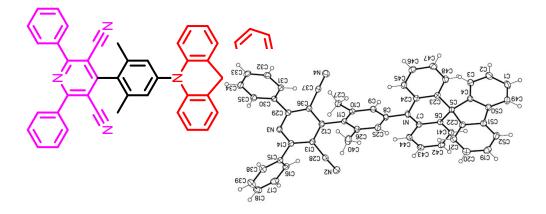



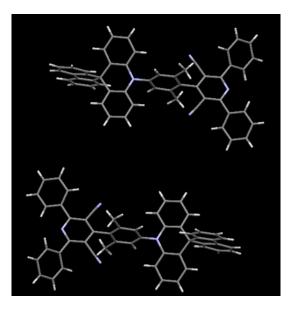

 Table S6.
 Crystal data and structure refinement for 190122lt\_0m.

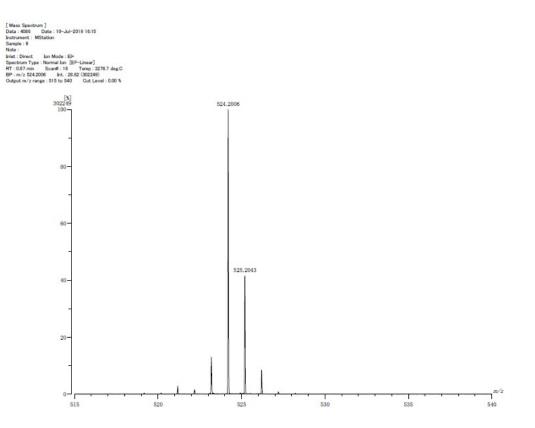
| Identification code    | 190122LT_0m              |                             |
|------------------------|--------------------------|-----------------------------|
| Empirical formula      | C39 H28 N4               |                             |
| Formula weight         | 552.65                   |                             |
| Temperature            | 100(2) K                 |                             |
| Wavelength             | 0.71073 Å                |                             |
| Crystal system         | Monoclinic               |                             |
| Space group            | P 21/c                   |                             |
| Unit cell dimensions   | a = 11.3340(8) Å         | $\Box = 90^{\circ}.$        |
|                        | b = 22.7417(15) Å        | $\Box = 96.470(4)^{\circ}.$ |
|                        | c = 11.3907(8) Å         | $\Box = 90^{\circ}.$        |
| Volume                 | 2917.3(3) Å <sup>3</sup> |                             |
| Z                      | 4                        |                             |
| Density (calculated)   | 1.258 Mg/m <sup>3</sup>  |                             |
| Absorption coefficient | 0.075 mm <sup>-1</sup>   |                             |
|                        |                          |                             |

| F(000)                                   | 1160                                        |
|------------------------------------------|---------------------------------------------|
| Crystal size                             | 0.10 x 0.08 x 0.07 mm <sup>3</sup>          |
| Theta range for data collection          | 1.791 to 26.444°.                           |
| Index ranges                             | -14<=h<=14, -28<=k<=28, -14<=l<=14          |
| Reflections collected                    | 48452                                       |
| Independent reflections                  | 5987 [R(int) = 0.0415]                      |
| Completeness to theta = $25.242^{\circ}$ | 100.0 %                                     |
| Absorption correction                    | Semi-empirical from equivalents             |
| Max. and min. transmission               | 0.7454 and 0.6766                           |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters           | 5987 / 0 / 390                              |
| Goodness-of-fit on F <sup>2</sup>        | 1.016                                       |
| Final R indices [I>2sigma(I)]            | R1 = 0.0395, wR2 = 0.0886                   |
| R indices (all data)                     | R1 = 0.0530, wR2 = 0.0950                   |
| Extinction coefficient                   | n/a                                         |
| Largest diff. peak and hole              | 0.215 and -0.181 e.Å <sup>-3</sup>          |

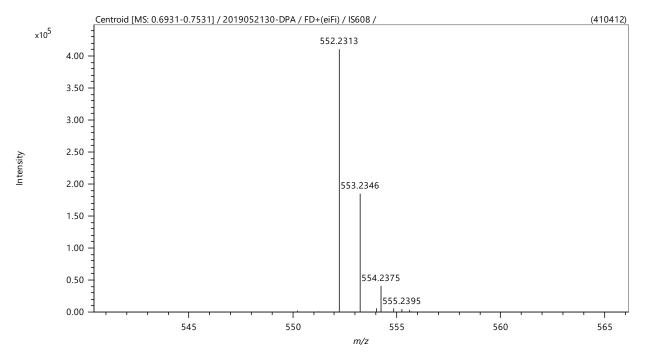
# ORTEP diagram of compound **SAcmPPC** (CCDC 2144159)



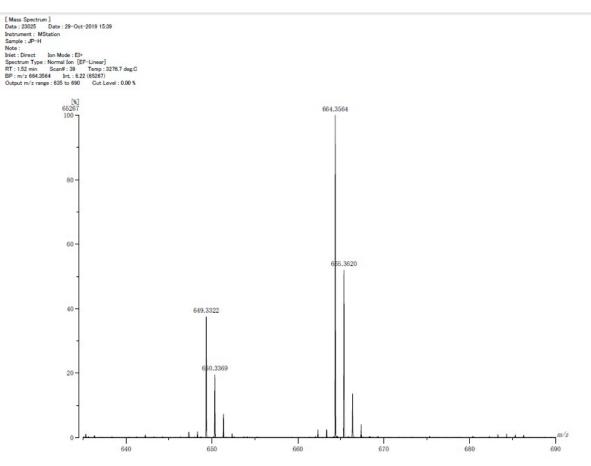




Table S7. Crystal data and structure refinement for mo\_191021lt\_0m.

| 5                                        |                                    |                              |
|------------------------------------------|------------------------------------|------------------------------|
| Identification code                      | mo_191021LT_0m                     |                              |
| Empirical formula                        | C47 H44 N4                         |                              |
| Formula weight                           | 664.86                             |                              |
| Temperature                              | 100(2) K                           |                              |
| Wavelength                               | 0.71073 Å                          |                              |
| Crystal system                           | Monoclinic                         |                              |
| Space group                              | P21/n                              |                              |
| Unit cell dimensions                     | a = 18.9196(19) Å                  | $\Box = 90^{\circ}.$         |
|                                          | b = 8.7386(8) Å                    | $\Box = 112.002(3)^{\circ}.$ |
|                                          | c = 24.498(2)  Å                   | $\Box = 90^{\circ}.$         |
| Volume                                   | 3755.4(6) Å <sup>3</sup>           |                              |
| Ζ                                        | 4                                  |                              |
| Density (calculated)                     | 1.176 Mg/m <sup>3</sup>            |                              |
| Absorption coefficient                   | 0.069 mm <sup>-1</sup>             |                              |
| F(000)                                   | 1416                               |                              |
| Crystal size                             | 0.12 x 0.03 x 0.03 mm <sup>3</sup> |                              |
| Theta range for data collection          | 1.171 to 26.559°.                  |                              |
| Index ranges                             | -22<=h<=23, -10<=k<=11, -30        | )<=1<=30                     |
| Reflections collected                    | 55347                              |                              |
| Independent reflections                  | 7462 [R(int) = 0.1597]             |                              |
| Completeness to theta = $25.242^{\circ}$ | 96.4 %                             |                              |
|                                          |                                    |                              |


| Absorption correction             | Semi-empirical from equivalents             |
|-----------------------------------|---------------------------------------------|
| Max. and min. transmission        | 0.7454 and 0.5995                           |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters    | 7462 / 0 / 469                              |
| Goodness-of-fit on F <sup>2</sup> | 1.097                                       |
| Final R indices [I>2sigma(I)]     | R1 = 0.0979, wR2 = 0.2379                   |
| R indices (all data)              | R1 = 0.1673, wR2 = 0.2690                   |
| Extinction coefficient            | 0.0059(10)                                  |
| Largest diff. peak and hole       | 0.597 and -0.323 e.Å <sup>-3</sup>          |

# Mass spectra of TADF emitters


## CzmPPC



## tCzmPPC



## SAcmPPC



- 1. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov and G. E. Scuseria, *J Chem Phys*, 2006, **125**, 224106.
- 2. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J Chem Phys*, 2010, **132**, 154104.