Supplementary Information

Double-dome superconductivity in germanium phosphides

Ge Fei^a, Shuai Duan^a, Yangfan Cui^a, Yunxian Liu^{a,b}, Xin Chen^{a,b*} and Xiaobing Liu^{a,b*}

- ^a Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
- ^b Advanced Research Institute of Multidisciplinary Science, Qufu Normal University, Qufu, Shandong, 273165, China

*Email: <u>chenxin@qfnu.edu.cn</u>, <u>xiaobing.phy@qfnu.edu.cn</u>

Figure S1: Relative enthalpy per formula unit referenced to the selected phases for GeP (a) and GeP_2 (b).

Figure S2: Relative enthalpy per formula unit referenced to the selected phases for GeP₃ (a) and GeP₄ (b). The inset in GeP₃ (a) shows the transition of $C2/m \rightarrow Pbma \rightarrow P^{\overline{1}}$ in more detail.

Figure S3: Relative enthalpy per formula unit referenced to the selected phases for GeP₅.

Figure S4: Crystal features of the predicted phosphorous-rich germanium. Energetically favorable structures of $\text{GeP}_2 P2_1$ at 0 GPa (a), *C*2 at 80 GPa (b) and *Cmca* at 120 GPa (c). Large sky blue and small pink spheres represent germanium and phosphorus atoms, respectively.

Figure S5: Crystal features of the predicted phosphorous-rich germanium. Energetically favorable structures of GeP₃ *Pbam* at 120 GPa (a), R^3m at 0 GPa (b-c); GeP₄ P^1 at 0 GPa (d-e). Large sky blue and small pink spheres represent germanium and phosphorus atoms, respectively.

Figure S6: Calculated electronic band structure and projected density of states (PDOS) of GeP $R^{3}m$ at 0 GPa (a) and GeP₂ $P2_1$ at 0 GPa (b), *Immm* at 30 GPa (c), C2 at 80 GPa (d), C2/m at 100 GPa (e) and *Cmca* at 120 GPa (f).

Figure S7: Calculated electronic band structure and projected density of states (PDOS) of GeP₃ R^3m at 0 GPa (a), C2/m at 80 GPa (b), *Pbma* at 100 GPa (c) and P^1 at 120 GPa (d).

Figure S8: Calculated electronic band structure and projected density of states (PDOS) of GeP₄ $P^{\overline{1}}$ at 0 GPa (a) and R³m at 40 GPa (b), GeP₅ $P2_1/m$ at 80 GPa (c) and C2/c at 100 GPa (d).

Figure S9: The Ge-*p* and P-*p* orbital projected Fermi surface with a certain band for I4/m GeP₄ at 120 GPa. The selected band is denoted with red color in Figure 3 of the main text.

Figure S10: Evolution of the relative energy during an *ab initio* molecular dynamics (AIMD) simulation at 500 and 800 K of $Fm^{3}m$ GeP at 8 GPa (a)-(b) and *I*4/m GeP₄ at 120 GPa (c)-(d). The snapshots denote the crystal structures before and after the AIMD simulation, which confirms the thermal stability of the newly predicted structures as no structural reconstruction is present.

Figure S11: Phonon dispersions, partial phonon density of states (PHDOS) and the partial electron-phonon integral $\lambda(\omega)$ of GeP $R^{3}m$ at 80 GPa (a), GeP₂ *Immm* at 30 GPa (b), *C*2 at 80 GPa (c), *C*2/*m* at 100 GPa (d) and *Cmca* at 120 GPa (e).

Figure S12: Phonon dispersions, partial phonon density of states (PHDOS) and the partial electron-phonon integral $\lambda(\omega)$ of GeP₃ $R^{3}m$ at 0 GPa (a), C2/m at 80 GPa (b), *Pbma* at 100 GPa (c), and $P^{\overline{1}}$ at 120 GPa (d).

Figure S13: The phonon dispersions, partial phonon density of states (PHDOS) and the partial electron-phonon integral $\lambda(\omega)$ of GeP₄ P^{1} at 0 GPa (a) and $R^{3}m$ at 40 GPa (b), GeP₅ $P2_{1}/m$ at 80 GPa (c) and C2/c at 100 GPa (d).

	Duagauna	Lattice		Wyckoff Positions (fractional)		
Phase	(GPa)	Parameters	Atoms			
	()	(Å)		x	У	Ζ
<i>Fm</i> ³ <i>m</i> GeP	8	a = b = c = 3.58	Ge(4b)	0.500	0.500	0.500
			Ge(4a)	0.000	0.000	0.000
			Ge(6c)	0.000	0.000	0.566
<i>R³m</i> GeP	80	a = b = 4.02 c = 19.18	Ge(6c)	0.000	0.000	0.700
		• 15110	P(6c)	0.000	0.000	0.058
			P(6c)	0.000	0.000	0.828
		a = 5.18	Ge(2a)	0.171	0.368	0.588
$P2_1 \text{ GeP}_2$	0	b = 4.86	P(2a)	0.498	0.203	0.249
		c = 4.94	P(2a)	0.247	0.016	0.940
		10.20	Ge(4f)	0.330	0.000	0.500
<i>Immm</i> GeP ₂	30	a = 10.20	P(4e)	0.155	0.000	0.000
		b = 4.77	P(2b)	0.500	0.000	0.000
		c = 3.36	P(2c)	0.000	0.000	0.500
		- 955	Ge(4c)	0.284	0.039	0.606
C2 GeP ₂	80	a = 8.55 b = 4.87	Ge(2b)	0.500	-0.268	0.500
		c = 4.80	P(4c)	0.437	0.277	0.271
			P(4c)	0.384	-0.122	0.053
			P(4c)	0.850	-0.032	0.863

 Table S1. Structural information of the predicted stable Ge-P phases.

		1 4 50	Ge(4i)	-0.895	0.000	-0.585
<i>C2/m</i> GeP ₂	100	a = b = 4.52 c = 6.59	P(4i)	-0.277	0.000	-0.242
			P(4i)	-0.603	0.000	-0.961
		a = 3.83	Ge (8f)	0.500	-0.423	0.854
<i>Cmca</i> GeP ₂	120	b = 8.13	P (8f)	0.500	-0.274	1.130
		c = 7.50	P (8f)	0.500	-0.604	0.596
			Ge (4i)	0.307	0.500	0.577
<i>C2/m</i> GeP ₃	30	a = 5.70 b = 3.30	P (4i)	0.931	0.500	0.500
-		c = 11.37	P (4i)	0.813	0.500	0.060
			P (4i)	0.558	0.500	0.826
		a = 2.80	Ge (4d)	0.572	0.565	0.750
<i>Pbma</i> GeP ₃	100	b = 4.17	P (4d)	0.177	0.151	0.750
		c = 14.08	P (4d)	0.942	0.342	1.250
			P (4d)	0.292	0.862	1.250
			Ge (2i)	0.634	0.253	0.050
			Ge (2i)	0.877	0.089	0.353
		a = 4.43	P (2i)	0.576	0.769	0.538
<u>л</u>] с. р	120	b = 4.43	P (2i)	0.333	0.967	0.233
P ¹ GeP ₃		c = 7.89	P (2i)	0.108	0.190	0.913
			P (2i)	0.628	0.581	0.278
			P (2i)	0.112	0.610	0.400
			P (2i)	0.159	0.406	0.156
			Ge (2i)	0.411	0.642	0.800
		a = 4.07	P (2i)	0.939	0.789	0.004
P ¹ GeP₄	0	b = 5.26	P (2i)	0.151	0.986	0.405
		c = 9.26	P (2i)	0.731	0.583	0.600

			P (2i)	0.694	0.845	0.204
			Ge (6c)	0.000	0.000	0.146
		a = b = 3.23	P (6c)	0.000	0.000	0.048
$R^{3}m$ GeP ₄	40	c = 41.09	P (6c)	0.000	0.000	0.349
			P (6c)	0.000	0.000	0.746
			P (6c)	0.000	0.000	0.556
		a = 5.96				
		h - 5.06	Ge (9d)	0.500	0.500	0.500
<i>I4/m</i> GeP ₄	120	0 - 5.90	P (36i)	0.320	0.120	0.500
		c = 2.65				
			Ge (2e)	0.952	0.750	0.194
		a = 11.09	P (2e)	0.222	0.250	0.141
		a = 11.08	P (2e)	0.300	0.750	0.813
$P2_1m$ GeP ₅	80	b = 3.03	P (2e)	0.858	0.250	0.537
		C = 5.67	P (2e)	0.381	0.250	0.490
			P (2e)	0.540	0.250	0.838
			Ge (8f)	-0.383	0.111	-0.342
		s — 12.00	P (8f)	0.370	0.863	-0.370
		a = 15.00 b = 7.40	P (8f)	-0.359	0.144	-0.000
<i>C</i> 2/ <i>c</i> GeP ₅	100	0 - 7.40	P (8f)	-0.144	0.893	-0.031
		c = /.98	P (8f)	-0.386	0.610	0.315
			P (8f)	-0.393	0.643	-0.346

Table S2. Calculated the superconducting transition temperature T_c , electron–phonon coupling (EPC) parameter $\lambda(\omega)$, the density of states at the Fermi level per formula unit N(E_f), and the logarithmic average honon frequency ω_{\log} for the predicted structures of GeP from 0 to 140 GPa. μ^* of 0.1 was selected for the T_c calculation.

Phase	Pressure (GPa)	T _c (K)	lambda	N(E _f) (States/Ry)	$\omega_{\log}\left(K ight)$
Fm ³ m	8	17.49	1.03	5.03	238.92
$Fm^{3}m$	10	16.53	0.92	4.95	269.51
$Fm^{3}m$	20	9.99	0.67	4.57	327.47
Fm ³ m	40	3.75	0.47	4.08	383.41
Fm ³ m	60	1.38	0.39	3.82	405.20
$R^{3}m$	80	13.14	0.76	19.50	310.74
$R^{\overline{3}}m$	120	3.79	0.48	14.75	356.32
$R^{\overline{3}}m$	140	2.49	0.44	14.16	376.76

Table S3. Calculated the superconducting transition temperature T_c , electron–phonon coupling (EPC) parameter $\lambda(\omega)$, the density of states at the Fermi level per formula unit N(E_f), and the logarithmic average honon frequency ω_{log} for the predicted structures of GeP₂ from 0 to 140 GPa. μ^* of 0.1 was selected for the T_c calculation.

Phase	Pressure (GPa)	T _c (K)	lambda	N(E _f) (States/Ry)	$\omega_{\log}(K)$
P21	0	0	-	-	-
Immm	30	7.51	0.63	12.08	287.91
Immm	40	5.74	0.55	12.17	326.44
Immm	60	3.13	0.46	12.24	369.27
<i>C</i> 2	80	9.06	0.65	19.86	311.24
<i>C</i> 2/ <i>m</i>	100	9.55	0.64	11.20	349.27
Cmca	120	13.14	0.58	24.95	389.67
Стса	140	3.79	0.53	24.24	413.92

Table S4. Calculated the superconducting transition temperature T_c , electron–phonon coupling (EPC) parameter $\lambda(\omega)$, the density of states at the Fermi level per formula unit N(E_f), and the logarithmic average honon frequency ω_{log} for the predicted structures of GeP₃ from 0 to 140 GPa. μ^* of 0.1 was selected for the T_c calculation.

Phase	Pressure (GPa)	T _c (K)	lambda	N(E _f) (States/Ry)	ω _{log} (K)
_R 3 _m	0	0.42	0.35	11.35	222.27
_R 3 _m	10	1.32	0.40	12.44	310.12
_R 3 _m	16	2.91	0.46	13.12	328.60
C2/m	30	3.46	0.47	14.54	370.93
C2/m	40	2.91	0.45	14.45	378.76
C2/m	60	2.91	0.45	14.50	365.44
C2/m	80	7.77	0.61	17.93	329.59
Pbma	100	5.63	0.55	30.81	317.30
рĪ	120	9.88	0.61	34.41	407.86
рĪ	140	7.35	0.55	33.12	429.58

Table S5. Calculated the superconducting transition temperature T_c , electron–phonon coupling (EPC) parameter $\lambda(\omega)$, the density of states at the Fermi level per formula unit N(E_f), and the logarithmic average honon frequency ω_{log} for the predicted structures of GeP₄ from 0 to 140 GPa. μ^* of 0.1 was selected for the T_c calculation.

Phase	Pressure (GPa)	Т _с (К)	λ	N(E _f) (States/Ry)	$\omega_{\log}(K)$
рl	0	0.27	0.33	14.26	216.72
рĪ	10	2.71	0.47	17.91	301.89
$R\overline{3}_m$	30	6.31	0.54	19.80	363.24
$R^{\overline{3}}m$	40	6.82	0.56	20.55	375.81
$R^{\overline{3}}m$	60	5.11	0.49	20.39	358.42
_R 3 _m	80	1.80	0.41	18.51	355.11
$R^{\overline{3}}m$	100	0.77	0.37	16.49	308.25
I4/m	120	19.02	0.81	12.00	395.24
I4/m	140	14.24	0.69	11.20	424.53

Table S6. Calculated the superconducting transition temperature T_c , electron-phonon coupling (EPC) parameter $\lambda(\omega)$, the density of states at the Fermi level per formula unit N(E_f), and the logarithmic average honon frequency ω_{log} for the predicted structures of GeP₅ from 0 to 140 GPa. μ^* of 0.1 was selected for the T_c calculation.

Phase	Pressure (GPa)	T _c (K)	lambda	N(E _f) (States/Ry)	ω _{log} (K)
рĨ	0	0.95	0.40	17.85	226.37
рĪ	6	2.21	0.45	19.79	281.97
pl	10	5.83	0.57	20.88	301.58
$p\bar{1}$	14	9.06	0.66	21.58	298.79
_P 3 _{m1}	20	8.61	0.61	37.83	351.12
_P 3 _{m1}	30	6.14	0.54	37.18	388.08
$P\bar{3}_{ml}$	40	5.48	0.52	37.16	400.74
<i>p</i> 3 _{<i>m1</i>}	60	4.36	0.49	36.93	401.36
$P2_{1}/m$	80	6.61	0.58	25.94	316.67
рl	100	14.69	0.75	50.95	357.27
<i>p</i> 1	120	10.66	0.63	48.11	398.28

Table S7. Calculated superconducting transition temperature T_c of I4/m GeP₄ with various μ^* .

μ^*	0.08	0.09	0.10	0.11	0.12
$T_c(\mathbf{K})$	21.54	20.27	19.02	17.80	16.61