Electronic Supplementary Information

Photoinduced Intra- and Inter-molecular Charge Transfer Dynamics in Organic Small Molecules with Intra-molecular Push-pull Electronic Structure

Yiwen Ji,* Lingxia Xu,* Xinyu Mu,* Wenjing Wang,*a and Kun Gao*a

a. School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

b. College of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China

*Corresponding E-mail: wwj8686@163.com (Wenjing Wang); gk@sdu.edu.cn (Kun Gao)

1. Parameter details:

In all simulations, unless otherwise specified, the values of model parameters are set as $t_0 = 2.5\text{ eV}$, $\alpha = 41.0\text{ eV/nm}$, $K = 2100\text{ eV/nm}$, $M = 1.35 \times 10^5\text{ eV} \cdot \text{fs}^2/\text{nm}^2$, $t_1 = t_2 = 0.05\text{ eV}$, $t_3 = 0.1\text{ eV}$, and $U = 1.5\text{ eV}$. The intra-molecular offsite Coulomb interaction strength V_{\parallel} and the inter-molecular vertical-neighbor sites Coulomb interaction strength V_{\perp} are treated as Ohno potentials $V_{\parallel(\perp)} = U / \sqrt{1 + \kappa (r_{\parallel(\perp)}/a)^2}$ with $\kappa = 2$, $r_{\parallel} = a$, and $r_{\perp} = 3\text{ Å}$ (κ is the screening factor, $a = 1.22\text{ Å}$ the average nearest-neighbor lattice constant, and r_{\perp} the inter-molecular distance between vertical-neighbor sites). The inter-molecular electron hopping integral between vertical-
neighbor sites is described as $t_\perp = \frac{t_0}{10} \exp(1 - \frac{r}{5})$.

2. Iteratively solving the static equations:

Considering the electronic eigenstate $|\phi_{\mu,s}\rangle$, we can expand it on the Wannier basis, that is, $|\phi_{\mu,s}\rangle = \sum_n Z_{\mu,n,s} |n\rangle$. As such, the electronic eigenstates are obtained by solving the eigenequation of the electronic Hamiltonian, written as:

$$\left[U\left(\rho_{n,n,s} - \frac{1}{2}\right) + V_s \sum_s (\rho_{n+1,n+1} + \rho_{n-1,n-1} - 2)\right] Z_{\mu,n,s} + \left[t_1 Z_{\mu,1,s} + \Delta_{\mu} Z_{\mu,1,s}\right] \left[\delta\left(i\frac{10}{4}\right) + \delta\left(i\frac{12}{4}\right)\right]$$

$$+ \left[t_1 Z_{\mu,1,s} + \Delta_{\mu} Z_{\mu,1,s}\right] \left[\delta\left(i\frac{7}{4}\right) + \delta\left(i\frac{9}{4}\right)\right]$$

$$- \Delta_{\mu} Z_{\mu,1,s} - t_{n+1,n} Z_{\mu,n+1,s} - t_{n,n+1} Z_{\mu,n+1,s} = \epsilon_{\mu} Z_{\mu,n,s}$$

where μ and μ' represents the site index of central group and the site index of terminal groups, respectively. $\delta(x,\text{int})=1$, if $x=\text{int}$; and $\delta(x,\text{int})=0$, if $x \neq \text{int}$, where “int” means an integer.

On the other hand, by minimizing the total energy of the molecule, we can obtain the lattice balance equation:

$$u_{n+1} - u_n = \frac{2\alpha}{K} \left(\frac{1}{N-1} \sum_{s} \rho_{n,n+1,s} - \sum_s \rho_{n,n+1,s}\right)$$

where a fixed boundary is employed. N is the total site number of a NFA molecule.

3. The quantum nonadiabatic evolution method:

Before dynamical simulations, we assume that the system is in ground state. Once the femtosecond electric pump pulse (FEPP) $E(t)$ is turned on, the system will experience an evolution. By using a nonadiabatic evolution method,1,2 we can
separately obtain the temporal evolution of the electronic state \(\Psi_{\nu,s}(n,t) \) and the lattice displacement \(u_n(t) \) (i.e., nuclear motion). The evolution of an electronic state \(\Psi_{\nu,s}(n,t) \) depends on the time dependent Schrödinger equation:

\[
\frac{i\hbar}{\partial t} \Psi_{\nu,s}(n,t) = -t_{n,n+1} \Psi_{\nu,s}(n+1,t) - t_{n-1,n} \Psi_{\nu,s}(n-1,t) + t_3 \{ \Psi_{\nu,s}(i+3,t)[\delta \left(\frac{i-7}{4}, \mathrm{int} \right) + \delta \left(\frac{i-9}{4}, \mathrm{int} \right)] \\
+ \Psi_{\nu,s}(i-3,t)[\delta \left(\frac{i-10}{4}, \mathrm{int} \right) + \delta \left(\frac{i-12}{4}, \mathrm{int} \right)] \}
\]

(S3)

\[
+ \Delta_{on} \Psi_{\nu,s}(i,t) - \Delta'_{on} \Psi_{\nu,s}(i',t) + [U \left(\rho_{n,n-1} - \frac{1}{2} \right) \\
+ V_{\nu} (\rho_{n+1,n+1} + \rho_{n-1,n-1} - 2) + eE(t)] \Psi_{\nu,s}(n,t)
\]

\(\Psi_{\nu,s}(n,t) = \langle n | \Psi_{\nu,s}(t) \rangle \) is the projection of an electronic state \(| \Psi_{\nu,s}(t) \rangle \) on the Wannier state of site \(n \). The hopping integrals \(t_{n,n+1} \) between sites \(n \) and \(n+1 \) in terminal groups, \(\pi \)-bridges, and central group are separately described as:

\[
t_{n,n+1} = \begin{cases}
 t_0 - \alpha(u_{n+1} - u_n) - t_i \cos \left(\frac{n\pi}{2} \right) & 1 \leq n \leq 7; 29 \leq n \leq 35 \\
 t_0 - \alpha(u_{n+1} - u_n) & 8 \leq n \leq 10; 26 \leq n \leq 28 \\
 t_0 - \alpha(u_{n+1} - u_n) + (-1)^{n+1} t_2 & 11 \leq n \leq 25
\end{cases}
\]

(S4)

The density matrix \(\rho_{n,m} \) is defined as:

\[
\rho_{n,m}(t) = \sum_{\nu,s} \Psi_{\nu,s}^*(n,t) g_{\nu,s} \sum_{\nu',s'} \Psi_{\nu',s'}(m,t)
\]

(S5)

Here, \(g_{\nu,s} \) is a time-independent distribution function and determined by the initial occupation of the electronic state \(| \Psi_{\nu,s}(t) \rangle \).

For the lattice part, the nuclear motion is classically described by the Newtonian equation of motion:

\[
M \ddot{u}_n = -K(2u_n - u_{n+1} - u_{n-1}) + 2\alpha[\rho_{n,n+1} - \rho_{n,n-1}] \\
+ eE(t)[\rho_{n,n} - 1] - \lambda M \dot{u}_n
\]

(S6)

Equations S3 and S6 can be numerically solved by the Runge-Kutta method of order
eight with step-size control.\(^3\) In addition, a damping term is introduced in Equation S6 to describe the energy dissipation into the surrounding medium by a tuning a parameter \(\lambda=0.05\ \text{fs}^{-1}\).

4. Transition details of a single NFA molecule:

Fig. S1. Time evolutions of the electron occupation number \(F_{\mu}(t)\) on the six band-edge levels in a single NFA molecule by different peak transitions, where the electronic push-pull potentials are separately set as \(\Delta_{\text{on}}=0\ \text{eV}\) (a1-c1), \(\Delta_{\text{on}}=0.3\ \text{eV}\) (a2-c2), \(\Delta_{\text{on}}=0.6\ \text{eV}\) (a3-c3), and \(\Delta_{\text{on}}=0.9\ \text{eV}\) (a4-c4), respectively.
5. Selection for the electronic push-pull potential of an actual NFA molecule:

Fig. S2. Charge density difference ΔQ_n between the molecular excited state and ground state, separately calculated by model method (a) and Gaussian method (b-c).4

Reproduced with permission from Chen et al., Chem. Soc. Rev. 49, 2828-2842 (2020).
Copyright 2020 The Royal Society of Chemistry.

When the electronic push-pull potential of a NFA molecule is chosen as $\Delta_{on} = 0.6$ eV, we find that the charge density difference between the excited state and ground state ($\Delta Q_n = q_{n, \text{excited state}} - q_{n, \text{ground state}}$, where $q_n = e(\rho_{n,n} - 1)$) calculated by model method (see Fig. S2(a)) is basically consistent with that calculated by Gaussian method (see Fig. S2(b) for ITIC and S2(c) for Y6).4 Therefore, for an actual ITIC or Y6 molecule, the electronic push-pull potential is estimated to be about $\Delta_{on} = 0.6$ eV.

6. Higher-energy transition details of different NFA molecular aggregates:
Fig. S3. Time evolutions of the electron occupation number $F_\mu(t)$ on several band-edge levels in NFA molecules with A-to-A type J-aggregation (a1-b1), A-to-D type J-aggregation (a2-b2), and D-to-D type H-aggregation (a3-b3), where the second and third peak transitions are compared.

For the second peak transition, we find that electron transition $\epsilon_2 \rightarrow \epsilon_2^*$ takes place in A-to-A type J-aggregate at the initial photoexcitation stage, soon the transited electron on the higher-energy level ϵ_2^* transits to the lower-energy level ϵ_1^* through an ultrafast internal conversion process (see Fig. S3(a1)). However, for A-to-D type J-
aggregate and D-to-D type H-aggregate, $\varepsilon_3 \rightarrow \varepsilon_3^*$ and $\varepsilon_6 \rightarrow \varepsilon_6^*$ takes place (see Figs. S3(a2) and S3(a3)), respectively. For the third peak transition, we find that $\varepsilon_1 \rightarrow \varepsilon_3^*$ occurs in A-to-A type J-aggregate, $\varepsilon_2 \rightarrow \varepsilon_4^*$ occurs in A-to-D type J-aggregate, and $\varepsilon_3 \rightarrow \varepsilon_5^*$ occurs in D-to-D type H-aggregate.

7. Effect of the molecular electronic push-pull potential on the inter-CT relaxation process:

Fig. S4. Time evolutions of the inter-molecular transferred charge quantity $Q_{\text{inter}}(t)$ for the first peak transition with different values of Δ_{on} in A-to-D type J-aggregate (a) and D-to-D type H-aggregate (b).

References:

3 Brankin, R.; Gladwell, I.; Shampine, L. RKSUITE: Software for ODE IVPS.