Electronic Supplementary Information

Photoinduced Intra- and Inter-molecular Charge Transfer Dynamics in Organic Small Molecules with Intra-molecular Push-pull Electronic Structure

Yiwen Ji, ${ }^{a}$ Lingxia Xu, ${ }^{\text {a }}$ Xinyu Mu, ${ }^{\text {a }}$ Wenjing Wang, ${ }^{\text {b }}$ and Kun Gao*a
a. School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

b. College of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China
*Corresponding E-mail: wwj8686@163.com (Wenjing Wang); gk@sdu.edu.cn (Kun Gao)

1. Parameter details:

In all simulations, unless otherwise specified, the values of model parameters are set as $t_{0}=2.5 \mathrm{eV}, \quad \alpha=41.0 \mathrm{eV} / \mathrm{nm}, \quad K=2100 \mathrm{eV} / \mathrm{nm}, \quad M=1.35 \times 10^{5} \mathrm{eV} \cdot \mathrm{fs}^{2} / \mathrm{nm}^{2}$, $t_{1}=t_{2}=0.05 \mathrm{eV}, t_{3}=0.1 \mathrm{eV}$, and $U=1.5 \mathrm{eV}$. The intra-molecular offsite Coulomb interaction strength $V_{\|}$and the inter-molecular vertical-neighbor sites Coulomb interaction strength V_{\perp} are treated as Ohno potentials $V_{/(\perp)}=U / \sqrt{1+\kappa\left(r_{/(\perp)} / a\right)^{2}}$ with $\kappa=2, r_{/ \prime}=a$, and $r_{\perp}=3 \AA(\kappa$ is the screening factor, $a=1.22 \AA$ the average nearestneighbor lattice constant, and r_{\perp} the inter-molecular distance between verticalneighbor sites). The inter-molecular electron hopping integral between vertical-
neighbor sites is described as $t_{\perp}=\frac{t_{0}}{10} \exp \left(1-\frac{r_{\perp}}{5}\right)$.

2. Iteratively solving the static equations:

Considering the electronic eigenstate $\left|\varphi_{\mu, s}\right\rangle$, we can expand it on the Wannier basis, that is, $\left|\varphi_{\mu, s}\right\rangle=\sum_{n} Z_{\mu, n, s}|n\rangle$. As such, the electronic eigenstates are obtained by solving the eigenequation of the electronic Hamiltonian, written as:

$$
\begin{align*}
& {\left[U\left(\rho_{n, n,-s}-\frac{1}{2}\right)+V_{/ \prime} \sum_{s}\left(\rho_{n+1, n+1}+\rho_{n-1, n-1}-2\right)\right] Z_{\mu, n, s}} \\
& +\left[t_{3} Z_{\mu, i-3, s}+\Delta_{\text {on }} Z_{\mu, i, s}\right]\left[\delta\left(\frac{i-10}{4}, \text { int }\right)+\delta\left(\frac{i-12}{4}, \text { int }\right)\right] \tag{S1}\\
& +\left[t_{3} Z_{\mu, i+3, s}+\Delta_{\text {on }} Z_{\mu, i, s}\right]\left[\delta\left(\frac{i-7}{4}, \text { int }\right)+\delta\left(\frac{i-9}{4}, \text { int }\right)\right] \\
& -\Delta_{\mathrm{on}}^{\prime} Z_{\mu, i, s}-t_{n-1, n} Z_{\mu, n-1, s}-t_{n, n+1} Z_{\mu, n+1, s}=\varepsilon_{\mu} Z_{\mu, n, s}
\end{align*}
$$

i and i^{\prime} represents the site index of central group and the site index of terminal groups, respectively. $\delta(x$, int $)=1$, if $x=$ int; and $\delta(x$, int $)=0$, if $x \neq$ int, where "int" means an integer.

On the other hand, by minimizing the total energy of the molecule, we can obtain the lattice balance equation:

$$
\begin{equation*}
u_{n+1}-u_{n}=\frac{2 \alpha}{K}\left(\frac{1}{N-1} \sum_{n, s} \rho_{n, n+1, s}-\sum_{s} \rho_{n, n+1, s}\right) \tag{S2}
\end{equation*}
$$

where a fixed boundary is employed. N is the total site number of a NFA molecule.

3. The quantum nonadiabatic evolution method:

Before dynamical simulations, we assume that the system is in ground state. Once the femtosecond electric pump pulse (FEPP) $E(t)$ is turned on, the system will experience an evolution. By using a nonadiabatic evolution method, ${ }^{1,2}$ we can
separately obtain the temporal evolution of the electronic state $\Psi_{v, s}(n, t)$ and the lattice displacement $u_{n}(t)$ (i.e., nuclear motion). The evolution of an electronic state $\Psi_{v, s}(n, t)$ depends on the time dependent Schrödinger equation:

$$
\begin{align*}
i \hbar \frac{\partial \Psi_{v, s}(n, t)}{\partial t}= & -t_{n, n+1} \Psi_{v, s}(n+1, t)-t_{n-1, n} \Psi_{v, s}(n-1, t) \\
& +t_{3}\left\{\Psi_{v, s}(i+3, t)\left[\delta\left(\frac{i-7}{4}, \text { int }\right)+\delta\left(\frac{i-9}{4}, \text { int }\right)\right]\right. \\
& \left.+\Psi_{v, s}(i-3, t)\left[\delta\left(\frac{i-10}{4}, \text { int }\right)+\delta\left(\frac{i-12}{4}, \text { int }\right)\right]\right\} \tag{S3}\\
& +\Delta_{\text {on }} \Psi_{v, s}(i, t)-\Delta_{\text {on }}^{\prime} \Psi_{v, s}\left(i^{\prime}, t\right)+\left[U\left(\rho_{n, n,-s}-\frac{1}{2}\right)\right. \\
& \left.+V_{/ \prime}\left(\rho_{n+1, n+1}+\rho_{n-1, n-1}-2\right)+e E(t)\right] \Psi_{v, s}(n, t)
\end{align*}
$$

$\Psi_{v, s}(n, t)=\left\langle n \mid \Psi_{v, s}(t)\right\rangle$ is the projection of an electronic state $\left|\Psi_{v, s}(t)\right\rangle$ on the Wannier state of site n. The hopping integrals $t_{n, n+1}$ between sites n and $n+1$ in terminal groups, π-bridges, and central group are separately described as:

$$
t_{n, n+1}=\left\{\begin{array}{cc}
t_{0}-\alpha\left(u_{n+1}-u_{n}\right)-t_{1} \cos (n \pi / 2) & 1 \leq n \leq 7 ; 29 \leq n \leq 35 \tag{S4}\\
t_{0}-\alpha\left(u_{n+1}-u_{n}\right) & 8 \leq n \leq 10 ; 26 \leq n \leq 28 \\
t_{0}-\alpha\left(u_{n+1}-u_{n}\right)+(-1)^{n+1} t_{2} & 11 \leq n \leq 25
\end{array}\right.
$$

The density matrix $\rho_{n, m}$ is defined as:

$$
\begin{equation*}
\rho_{n, m}(t)=\sum_{v, s} \Psi_{v, s}^{*}(n, t) g_{v, s} \sum_{v, s} \Psi_{v, s}(m, t) \tag{S5}
\end{equation*}
$$

Here, $g_{v, s}$ is a time-independent distribution function and determined by the initial occupation of the electronic state $\left|\Psi_{v, s}(t)\right\rangle$.

For the lattice part, the nuclear motion is classically described by the Newtonian equation of motion:

$$
\begin{align*}
M \ddot{u}_{n}= & -K\left(2 u_{n}-u_{n+1}-u_{n-1}\right)+2 \alpha\left[\rho_{n, n+1}-\rho_{n, n-1}\right] \\
& +e E(t)\left[\rho_{n, n}-1\right]-\lambda M \dot{u}_{n} \tag{S6}
\end{align*}
$$

Equations S3 and S6 can be numerically solved by the Runge-Kutta method of order
eight with step-size control. ${ }^{3}$ In addition, a damping term is introduced in Equation S6 to describe the energy dissipation into the surrounding medium by a tuning a parameter $\lambda=0.05 \mathrm{fs}^{-1}$.

4. Transition details of a single NFA molecule:

Fig. S1. Time evolutions of the electron occupation number $F_{\mu}(t)$ on the six bandedge levels in a single NFA molecule by different peak transitions, where the electronic push-pull potentials are separately set as $\Delta_{\text {on }}=0 \mathrm{eV}$ (a1-c1), $\Delta_{\text {on }}=0.3 \mathrm{eV}$ (a2-c2), $\Delta_{\mathrm{on}}=0.6 \mathrm{eV}$ (a3-c3), and $\Delta_{\mathrm{on}}=0.9 \mathrm{eV}$ (a4-c4), respectively.

5. Selection for the electronic push-pull potential of an actual NFA molecule:

Fig. S2. Charge density difference ΔQ_{n} between the molecular excited state and ground state, separately calculated by model method (a) and Gaussian method (b-c). ${ }^{4}$ Reproduced with permission from Chen et al., Chem. Soc. Rev. 49, 2828-2842 (2020). Copyright 2020 The Royal Society of Chemistry.

When the electronic push-pull potential of a NFA molecule is chosen as $\Delta_{\text {on }}=0.6 \mathrm{eV}$, we find that the charge density difference between the excited state and ground state ($\Delta Q_{n}=q_{n, \text {,excited state }}-q_{n, \text { ground state }}$, where $q_{n}=e\left(\rho_{n, n}-1\right)$) calculated by model method (see Fig. S2(a)) is basically consistent with that calculated by Gaussian method (see Fig. S2(b) for ITIC and S2(c) for Y6). ${ }^{4}$ Therefore, for an actual ITIC or Y6 molecule, the electronic push-pull potential is estimated to be about $\Delta_{\text {on }}=0.6 \mathrm{eV}$.

6. Higher-energy transition details of different NFA molecular aggregates:

Fig. S3. Time evolutions of the electron occupation number $F_{\mu}(t)$ on several bandedge levels in NFA molecules with A-to-A type J-aggregation (a1-b1), A-to-D type Jaggregation (a2-b2), and D-to-D type H-aggregation (a3-b3), where the second and third peak transitions are compared.

For the second peak transition, we find that electron transition $\varepsilon_{2} \rightarrow \varepsilon_{2}^{*}$ takes place in A-to-A type J-aggregate at the initial photoexcitation stage, soon the transited electron on the higher-energy level ε_{2}^{*} transits to the lower-energy level ε_{1}^{*} through an ultrafast internal conversion process (see Fig. S3(a1)). However, for A-to-D type J-
aggregate and D-to-D type H -aggregate, $\varepsilon_{3} \rightarrow \varepsilon_{3}^{*}$ and $\varepsilon_{6} \rightarrow \varepsilon_{2}^{*}$ takes place (see Figs. $\mathrm{S} 3(\mathrm{a} 2)$ and $\mathrm{S} 3(\mathrm{a} 3)$), respectively. For the third peak transition, we find that $\varepsilon_{1} \rightarrow \varepsilon_{3}^{*}$ occurs in A-to-A type J -aggregate, $\varepsilon_{2} \rightarrow \varepsilon_{4}^{*}$ occurs in A-to-D type J -aggregate, and $\varepsilon_{3} \rightarrow \varepsilon_{5}^{*}$ occurs in D-to-D type H-aggregate.

7. Effect of the molecular electronic push-pull potential on the inter-CT relaxation

 process:

Fig. S4. Time evolutions of the inter-molecular transferred charge quantity $Q_{\text {inter }}(t)$ for the first peak transition with different values of $\Delta_{\text {on }}$ in A-to-D type J-aggregate (a) and D-to-D type H -aggregate (b).

References:

1 Z. An, C. Q. Wu, and X. Sun, Phys. Rev. Lett. 2004, 93, 216407.

2 Anders A. Johansson and Sven Stafström, Phys. Rev. B 2004, 69, 235205.

3 Brankin, R.; Gladwell, I.; Shampine, L. RKSUITE: Software for ODE IVPS.

4 X. Wan, C. Li, M. Zhang, and Y. Chen, Chem. Soc. Rev. 2020, 49, 2828.

