Supporting Information

Constructing two-dimensional crossed molecular packing

through branching chain engineering of amino-

indenofluorene derivatives

Zhi-Ping, Fan*, ${ }^{\text {a, }}{ }^{\text {b }}$ Xiang-Yang. Li, ${ }^{\text {a }}$ Bing. Sun, ${ }^{\text {a }}$ Chun-Lin Sun, ${ }^{\mathrm{a}}$ Zi-Fa Shi, ${ }^{\mathrm{a}}$ Xiang-Feng Shao

Materials

The chemical reagents and solvents were purchased and used as received without further purification except noting.

Synthesis

3d

Scheme 1. The synthetic route of the 4-boromo-dialkylaniline derivatives

General Procedure for 2a-c: A mixture of Monoalkyl aniline (0.1 mol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.12 $\mathrm{mol})$, n -Octyl Bromide (0.1 mol), and DMF (300 ml) was stirred under argon at $80^{\circ} \mathrm{C}$ for about 12 h . The mixture was then poured into water and extracted with dichloromethane for three times. The organic layer was dried (Na2SO4), filtered, and the solvent was evaporated to obtain colourless oil. The crude product was purified by column chromatography (hexane as eluent).

N-methyl-N-octylaniline (2a) : Colourless oil, 92\% yield. 1H NMR (400 MHz, CDCI3) $\delta 7.25-7.21(\mathrm{t}, 2 \mathrm{H}), 6.71-6.69$ (d, 2H), 6.67-6.65 (d, 1H), 3.32-3.28 (t, 2H), 2.93 $(\mathrm{s}, 3 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 10 \mathrm{H}), 0.91-0.87(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDC13) $\delta 149.50,129.23,115.92,112.21,52.96,38.36,31.99,29.67,29.48,27.35$, 26.81, 22.80, 14.23.

N-ethyl-N-octylaniline (2b) : Colourless oil, 94% yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.24-7.20(\mathrm{t}, 2 \mathrm{H}), 6.68-6.66(\mathrm{~d}, 2 \mathrm{H}), 6.64-6.62(\mathrm{~d}, 1 \mathrm{H}), 3.40-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.23(\mathrm{t}$, $2 H), 1.63-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.25(\mathrm{~m} \mathrm{10H}), 1.18-1.14(\mathrm{t}, 3 \mathrm{H}), 0.92-0.89(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 147.99,129.36,115.22,111.71,50.56,44.99,32.04,29.72$, 29.55, 27.64, 27.39, 22.86, 14.31, 12.42.

C4C8Ph:
N-ethyl-N-octylaniline (2c) : Colourless oil, 91% yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$) $\delta 7.20-7.16(\mathrm{t}, 2 \mathrm{H}), 6.69-6.67(\mathrm{~d}, 1 \mathrm{H}), 6.62-6.60(\mathrm{~d}, 2 \mathrm{H}), 3.26-3.22(\mathrm{t}, 2 \mathrm{H}), 3.12-3.08(\mathrm{t}$, $2 H), 1.65-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.25(\mathrm{~m}, 12 \mathrm{H}), 0.97-0.93(\mathrm{t}, 3 \mathrm{H}), 0.90-0.87(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDC13) $\delta 148.54,129.25,117.06,112.68,44.01,31.91,29.59$, 29.49, 29.43, 29.35, 27.25, 27.21, 22.74, 20.42, 14.21, 14.12 .

General Procedure for 3a-c. The reagents $2(50 \mathrm{mmol})$ were dissolved in dry dichloromethane (100 ml), and cooled to $0^{\circ} \mathrm{C} . \mathrm{N}$-Bromobutanimide (NBS, 50 mmol) was added. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, and then it was stirred for 12 h at room temperature. The mixture was extracted with $5 \% \mathrm{NaOH}$ solution (30 ml), and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to dryness. The crude product was purified by column chromatography (silica gel, hexane as eluent), to give the product as colourless oil.

4-bromo-N-methyl-N-octylaniline (3a): 92\% yield. ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 MHz, CDC13) $\delta 7.29-7.27(\mathrm{~d}, 2 \mathrm{H}), 6.56-6.54(\mathrm{~d}, 2 \mathrm{H}), 3.29-3.25(\mathrm{t}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 2 \mathrm{H})$, 1.33-1.23(m, 10H), 0.90-0.88 (t, 3H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C 1 3}$) δ 148.41, 131.87, 113.76, 107.69, 52.96, 38.51, 31.97, 29.64, 29.45, 27.29, 26.65, 22.80, 14.25.

4-bromo-N-ethyl-N-octylaniline (3b): 91\% yield. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l 3}$): $\delta 7.29-7.27(\mathrm{~d}, 2 \mathrm{H}), 6.53-6.51(\mathrm{~d}, 2 \mathrm{H}), 3.35-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.17(\mathrm{t}, 2 \mathrm{H}), 1.59-1.52$
$(\mathrm{m}, 2 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 10 \mathrm{H}), 1.15-1.11(\mathrm{t}, 3 \mathrm{H}), 0.91-0.88(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 147.05,131.94,113.47,106.96,50.68,45.16,31.97,29.63,29.46,27.49$, 27.31, 22.80, 14.25, 12.27.

4-bromo-N-buthyl-N-octylaniline (3c): 91\% yield. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.25-7.23(\mathrm{t}, 2 \mathrm{H}), 6.50-6.48(\mathrm{~d}, 2 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 4 \mathrm{H}), \quad 1.57-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.38-$ $1.27(\mathrm{~m}, 12 \mathrm{H}), 0.96-0.92(\mathrm{t}, 3 \mathrm{H}), 0.90-0.87(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $147.03,131.78,113.21,106.62,51.16,50.87,31.89,29.55,29.40,29.23,27.18,27.06$, 22.73, 20.37, 14.20, 14.09.

4-bromo-N,N-dioctylaniline (3d): 95\% yield. A mixture of 4-bromoaniline (0.1 mol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.25 mol), n-Octyl Bromide (0.2 mol), and DMF (500 ml) was stirred under argon at $80^{\circ} \mathrm{C}$ for about 12 h . The mixture was then poured into water and extracted with dichloromethane for three times. The organic layer was dried (Na2SO4), filtered, and the solvent was evaporated to obtain colourless oil. The crude product was purified by column chromatography (hexane as eluent). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.25-7.23(\mathrm{t}, 2 \mathrm{H}), 6.47-6.47(\mathrm{~d}, 2 \mathrm{H}), 3.22-3.19(\mathrm{t}, 4 \mathrm{H}), \quad 1.58-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.34-$ $1.22(\mathrm{~m}, 20 \mathrm{H}), 0.90-0.87(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 147.05,131.77$, 113.23, 106.63, 51.14, 31.85, 29.51, 29.35, 27.15, 27.05, 22.69, 14.15.

Scheme 1. The synthetic route of the IFD derivatives

General Procedure for 5a-d. The reagents 3a-d (10 mmol) were dissolved in dry tetrahydrofuran (50 ml) under argon, and cooled to $-78^{\circ} \mathrm{C}$. A solution of n-BuLi (2.5 $\mathrm{M}, 4 \mathrm{ml}$) was added dropwise to the mixture for 30 min . Then the mixture was stirred
at $-78{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \mathrm{B}(\mathrm{OBu})_{3}(4 \mathrm{ml}, 15 \mathrm{mmol})$ was added. The solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$, and then it was stirred for 8 h at room temperature.

The dimethyl 2,5-dibromoterephthalate ($0.7 \mathrm{~g}, 2 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(116 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 10 \mathrm{ml})$ were added into the mixture, and the solution was degassed with argon. The mixture was reflux under argon for 8 h and then was cooled to room temperature. The reaction was quenched with water (30 ml) and extracted whit ethyl acetate $(30 \mathrm{ml})$ for three times. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to dryness. The crude product was purified by column chromatography to give the product as yellow solid.
compound 5a: 74\% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}$) $\delta 7.73(\mathrm{~s}, 2 \mathrm{H})$, 7.23-7.21(d, 4H), 6.73-6.69 (d, 4H), 3.71 (s, 6H), 3.36-3.32 (t, 4H), $2.96(\mathrm{~s}, 6 \mathrm{H}), 1.64-$ $1.58(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.29(\mathrm{~m}, 20 \mathrm{H}), 0.91-0.88(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ $169.58,148.90,139.88,132.89,131.63,129.34,126.98,111.73,52.91,52.31,38.44$, 31.99, 29.68, 29.49, 27.35, 26.92, 22.81, 14.27.
compound 5b: 74\% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.72(\mathrm{~s}, 2 \mathrm{H}), 7.23-$ $7.21(\mathrm{~d}, 4 \mathrm{H}), 6.68-6.66(\mathrm{~d}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.42-3.37(\mathrm{t}, 4 \mathrm{H}), 3.29-3.24(\mathrm{t}, 4 \mathrm{H}), 1.65-1.57$ $(\mathrm{m}, 4 \mathrm{H}), 1.33-1.29(\mathrm{~m}, 24 \mathrm{H}), 1.19-1.16$ (t, 6H), 0.91-0.87(t, 6H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 169.59,147.49,139.67,132.72,131.52,129.36,126.23,111.26,52.26$, 50.50, 44.97, 31.94, 29.63, 29.46, 27.62, 27.31, 22.77, 14.24, 12.45.
compound 5c: 83% yield. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.72$ (s, 2H), 7.22$7.20(\mathrm{~d}, 4 \mathrm{H}), 6.66-6.64(\mathrm{~d}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.31-3.26(\mathrm{~m}, 8 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 8 \mathrm{H}), 1.39-$ $1.24(\mathrm{~m}, 24 \mathrm{H}), 0.98-0.95(\mathrm{t}, 6 \mathrm{H}), 0.91-0.87(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $169.65,147.71,139.70,132.73,131.58,129.37$, 126.15, 111.27, 52.31, 51.15, 50.86, 31.98, 29.66, 29.54, 29.50, 27.37, 27.33, 22.81, 20.50, 14.28, 14.20.
compound 5a: 81% yield. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.73(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.20$ $(\mathrm{d}, 4 \mathrm{H}), 6.66-6.64(\mathrm{~d}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.30-3.26(\mathrm{t}, 8 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 8 \mathrm{H}), 1.34-1.26$ $(\mathrm{m}, 40 \mathrm{H}), 0.91-0.88(\mathrm{t}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.64,147.81,139.76$, $132.82,131.58,129.40,126.31,111.38,52.31,51.15,50.86,31.98,29.66,29.54,29.50$, 27.37, 27.33, 22.81, 20.50, 14.28, 14.20.

General Procedure for 6a-d. The compounds 5a-d (1 mmol) and KOH (5.6 g, 10 mmol, dissolved in $10 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$) were dissolved in ethanol (20 ml) and heated to reflux for 24 h . After cooling, the EtOH was evaporated to dryness. Hydrochloric acid (6\%) was added to neutral, and then saturated ammonium chloride solution was added until no more precipitation occurred. The precipitate was collected and then heated to dryness at $120^{\circ} \mathrm{C}$.

After dryness, the precipitate was mixed with polyphosphoric acid (PPA, 30 g) and heated to $160{ }^{\circ} \mathrm{C}$, keeping vigorous stirring for 3 h . The mixture was poured into ice. The precipitate was collected, washed with water and heated to dryness to afford crude product. The crude product was recrystallized with dimethylformamide (DMF) to give pure product.

MOA-IFD (6a): 57% yield, black needles. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}, \mathbf{p p m}$) δ 7.47 (s, 2H), 7.28-7.26 (d, 2H), 6.99 (d, 2H), 6.69-6.67 (dd, 2H), 3.36-3.32 (t, 4H), 2.99 (s, 6H), 1.62-1.54 (m, 4H), 1.36-1.25 (m, 20H), 0.90-0.86 (t, 6H). ${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}, \mathbf{p p m}\right) \delta 194.6,150.0,145.4,139.3,135.6,130.8,121.2,116.4,114.4,108.1$, 52.9, 38.7, 31.8, 29.5, 29.3, 27.1, 26.7, 22.6, 14.1. ESI-HRMS calculated for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 565.3794 ;$ Found: 565.3789 .

EOA-IFD (6b): 57% yield, black flacks. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}$) δ 7.46 (s, 2H), 7.27-7.25 (d, 2H), 6.96 (d, 2H), 6.66-6.64 (dd, 2H), 3.43-3.38 (t, 4H), 3.30-3.26 (t, 4H), $\quad 1.61-1.59(m, 4 H), 1.34-1.25(m, 20 H), 1.19-1.16(t, 6 H), 0.90-0.87$ $(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta=194.71,149.02,145.52,139.48,135.96$, $130.57,121.46,116.32,114.43,108.14,50.91,45.45,31.97,29.63,29.46,27.78,27.31$, 22.80, 14.22, 12.56. ESI-HRMS calculated for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 593.411$; Found: 593.4106

BOA-IFD (6c): 62% yield, black flacks. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 7.47(s,2H), 7.28-7.26(d,2H), 6.97-6.96(d,2H), 6.67-6.64(dd, 2H), 3.34-3.29 (m, 8H), $1.64,-1.56(\mathrm{~m}, 8 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 24 \mathrm{H}), 1.00-0.97(\mathrm{~s}, 6 \mathrm{H}), 0.93-0.89(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13}$ C NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 194.81,149.13,145.49,139.44,135.88,130.43,121.41,116.27$, 114.38, 108.10, 51.47, 51.19, 31.97, 29.67, 29.63, 29.47, 27.51, 27.28, 22.80, 20.47, 14.25, 14.14. ESI-HRMS calculated for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 649.473$; Found:

DOA-IFD (6d): 57\% yield, black powders. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}, \mathbf{p p m}\right) \delta$ $7.46(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~d}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.64-6.62(\mathrm{~d}, 2 \mathrm{H}), 3.31-3.27(\mathrm{t}, 8 \mathrm{H}), \quad 1.60-$ $1.56(\mathrm{~m}, 8 \mathrm{H}), 1.32-1.28(\mathrm{~m}, 40 \mathrm{H}), 0.90-0.87(\mathrm{t}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 5 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $=194.67,149.20,145.50,139.50,135.94,130.50,121.43,116.35,114.41,108.19$, 51.51, 31.98, 29.62, 29.46, 27.53, 27.29, 22.80, 14.22. ESI-HRMS calculated for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 761.599$; Found: 761.5981.

Intermolecular interactions

Table S1. Intermolecular interactions including electrostatic interactions, dispersion, repulsion, and polarization energy components. The dimer 1 (D1), dimer 2 (D2) and dimer 3 (D3) are the edge-to-edge, face-to-face and edge-to-face stacked molecules (Figure 3), respectively.

		E_ele (kJ/mol)	E_pol (kJ/mol)	E_dis (kJ/mol)	E_rep $(\mathrm{kJ} / \mathrm{mol})$	E_tot $(\mathrm{kJ} / \mathrm{mol})$
MOA-IFD	D1	-15	-7.38	-27.46	19.79	-33.01
	D2	-3.31	-4.72	-152.62	69.67	-96.86
	D3	-12.4	-2.63	-38.34	20.78	-35.6
aEOA-IFD	D1	-27.58	-10.52	-88.35	73.23	-68.65
	D2	-22.81	-4.33	-102.72	69.3	-73.95
	D3	-21.53	-4.67	-106.34	58.82	-82.49
bEOAIFD	D1	-26.43	-10.47	-82.49	59.41	-70.84
	D2	-8.18	-4.17	-96.72	45.84	-67.64
	D3	-16.06	-4.97	-91.98	36.03	-78.5
BOAIFD	D1	-25.89	-11.64	-63.94	49.17	-61.29
	D2	-11.67	-3.61	-97.24	47.63	-70.25
	D3	-11.67	-3.61	-97.24	47.63	-70.25

The 2D-GIXRD patterns of the films annealed at different temperature

Figure S1. The 2D-GIXDs of the MOA-IFD films annealed at different temperature.

Figure S2. The 2D-GIXDs of the EOA-IFD films annealed at different temperature.

Figure S3. The 2D-GIXDs of the BOA-IFD films annealed at different temperature.

Figure S4. The 2D-GIXDs of the DOA-IFD films annealed at different temperature.

Figure S5. The molecular orientation in the films of the a) MOA-IFD, b) EOA-IFD and c) BOA-IFD/DOA-IFD on the substrate. The 2D-GIXRD results reveal that the (001) plane is parallel with the surface of the substrate for the triclinic crystals including MOA-IFD and EOA-IFD, while the (100) plane is parallel with the surface of the substrate for the monoclinic crystals including the BOA-IFD and DOA-IFD.

