Supporting Information

Highly Efficient Blue Emitting One Dimensional Lead-Free Nanocrystals

Jianing Duan, Jun Xi*, Bo Jiao, Jinfei Dai, Yanqing Zu and Zhaoxin Wu*

Figure S1. ¹H NMR spectra of $Cs_5Cu_3Cl_6l_2$ NCs dissolved in $(CD_3)_2SO$.

Figure S2. XRD patterns of $Cs_5Cu_3Cl_6l_2$ powders stored in the air for 0 day and 1 month.

Figure S3. PL spectra of Cs₅Cu₃Cl₆I₂ colloidal NCs stored in ambient condition for different time.

Figure S4. (a) X-ray photoelectron spectroscopic (XPS) analysis of $Cs_5Cu_3Cl_6l_2$ NCs powders and the high-resolution spectra of (b) Cs 3d; (c) Cu 2p; (d) Cu LM2; (e) Cl 2p; (f) I 3d.

Figure S5. The transmission electron microscopy image of $Cs_5Cu_3Cl_6l_2$ NCs (right: projected view of (001) lattice planes; Gray, blue, yellow and purple spheres represent Cs, Cu, Cl and I atoms, respectively).

Figure S6. The scanning electron microscopy image of $Cs_5Cu_3Cl_6l_2$ NCs coated on ITO substrate.

Figure S7. (a) PLQY and corresponding sample with and without excitation by UV light of $Cs_5Cu_3Cl_6l_2$ NCs. (b) The value of PLQY distribution histogram of as-prepared samples.

Figure S8. Plot of PLQYs over time for $Cs_5Cu_3Cl_6l_2$ NCs.

Figure S9. The UV/Vis absorption spectra of $Cs_5Cu_3Cl_6l_2$ NCs.

Figure S10. PL excitation (PLE) spectra measured at different emission wavelength.

Figure S11. Time-resolved PL decay curves of Cs₅Cu₃Cl₆l₂ NCs.

Figure S12. The fitted PL spectra by an exponentially modified Gaussian by multiple Gaussian distributions at different temperature.

Figure S13. The PL spectra of $Cs_5Cu_3Cl_6l_2$ NCs at different power density.

Table S1. Structural and optica	characteristics of copper hali	ide perovskites-like materials.
---------------------------------	--------------------------------	---------------------------------

Compound	Dimension	PL/ nm	Stokes shift/ nm	Polyhedral connection mode	Structure	Reference
Cs ₃ Cu ₂ I ₅	0D	445	155	edge-sharing		1
(MA) ₄ Cu ₂ Br ₆	-	524	222		XXXX	2
(C ₁₆ H ₃₆ N)Cul ₂	-	463	183			3
CsCu ₂ I ₃	1D	568	240	edge-sharing		4
Rb ₂ CuCl ₃		395	93	corner-sharing		5
Rb_2CuBr_3		385	85	corner-sharing		5
[KC ₂] ₂ [Cu ₄ I ₆]		545	145	edge-sharing and face-sharing		6

References

[1] T. Jun, K. Sim, S. limura, M. Sasase, H. Kamioka, J. Kim, H. Hosono, *Adv. Mater.* 2018, **30**, 1804547.

[2] H. Peng, S. Yao, Y. Guo, R. Zhi, X. Wang, F. Ge, Y. Tian, J. Wang, B. Zou, J Phys Chem Lett 2020, 11, 4703-4710.

[3] X. Liu, F. Yuan, C. Zhu, J. Li, X. Lv, G. Xing, Q. Wei, G. Wang, J. Dai, H. Dong, J. Xu, B. Jiao, Z. Wu, *Nano Energy* 2022, **91**, 106664.

[4] R. Lin, Q. Guo, Q. Zhu, Y. Zhu, W. Zheng, F. Huang, Adv. Mater. 2019, **31**, 1905079.

[5] B. Yang, L. Yin, G. Niu, J. H. Yuan, K. H. Xue, Z. Tan, X. S. Miao, M. Niu, X. Du, H. Song, E. Lifshitz, J. Tang, *Adv. Mater.* 2019, **31**, 1904711.

[6] S. Li, J. Xu, Z. Li, Z. Zeng, W. Li, M. Cui, C. Qin, Y. Du, Chem. Mater. 2020, **32**, 6525-6531.