Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Efficient monomolecular white emission of phenothiazine boronic ester derivatives with room temperature phosphorescence

Faizal Khan^a, Lesia Volyniuk,^b Melika Ghasemi,^b Dmytro Volyniuk,^b Juozas Vidas Grazulevicius^b Rajneesh Misra^a*

Supporting Information

Contents	Page
Experimental Section	2
Figure S1. ¹ H NMR of H-PTZ-Bpin (CDCl ₃ , 500 MHz)	3
Figure S2. ¹³ C{ ¹ H} NMR of H-PTZ-Bpin (CDCl ₃ , 126 MHz)	3
Figure S3. ¹ H NMR of CHO-PTZ-Bpin (CDCl ₃ , 500 MHz)	4
Figure S4. ¹³ C{ ¹ H} NMR of CHO-PTZ-Bpin (CDCl ₃ , 126 MHz)	4
Figure S5. ¹ H NMR of CN-PTZ-Bpin (CDCl ₃ , 500 MHz)	5
Figure S6. ¹³ C{ ¹ H} NMR of CN-PTZ-Bpin (CDCl ₃ , 126 MHz)	5
Figure S7. ¹ H NMR of PhCN-PTZ-Bpin (CDCl ₃ , 500 MHz)	6
Figure S8. ¹³ C{ ¹ H} NMR of PhCN-PTZ-Bpin (CDCl ₃ , 126 MHz)	6
Figure 9. HRMS of H-PTZ-Bpin	7
Figure 10. HRMS of CHO-PTZ-Bpin	7
Figure 11. HRMS of CN-PTZ-Bpin	7
Figure 12. HRMS of PhCN-PTZ-Bpin	8
Crystallographic data	8–12

Figure S16. PL spectra (left) and PL decay curves (right) of non-deoxygenated (air) and deoxygenated (deox.) THF solutions of CHO-PTZ-Bpin, CN-PTZ-Bpin, and PhCN-PTZ-Bpin at room temperature 13

Figure S17. PL and phosphorescence spectra of **CHO-PTZ-Bpin**, **CN-PTZ-Bpin**, and **PhCN-PTZ-Bpin** in THF at 77K. Phosphorescence was separated from fluorescence using a delay of 1ms after excitation 14

Figure S18. PL spectra of low-concentrated (5wt.%) dispersions of CHO-PTZ-Bpin, CN-PTZ-Bpin, and PhCN-PTZ-Bpin in ZEONEX under air and vacuum at room temperature.

Experimental Section

Scheme S1. Synthesis of phenothiazine derivatives H-PTZ-Bpin, CHO-PTZ-Bpin, CN-PTZ-Bpin, and PhCN-PTZ-Bpin.

Figure S1. ¹H NMR of H-PTZ-Bpin (CDCl₃, 500 MHz).

Figure S2. ¹³C{¹H} NMR of H-PTZ-Bpin (CDCl₃, 126 MHz).

Figure S3. ¹H NMR of CHO-PTZ-Bpin (CDCl₃, 500 MHz).

Figure S4. ¹³C{¹H} NMR of CHO-PTZ-Bpin (CDCl₃, 126 MHz).

Figure S5. ¹H NMR of CN-PTZ-Bpin (CDCl₃, 500 MHz).

Figure S6. ${}^{13}C{}^{1}H$ NMR of CN-PTZ-Bpin (CDCl₃, 126 MHz).

Figure S7. ¹H NMR of PhCN-PTZ-Bpin (CDCl₃, 500 MHz).

Figure S8. ¹³C{¹H} NMR of **PhCN-PTZ-Bpin** (CDCl₃, 126 MHz).

Figure 9. HRMS of H-PTZ-Bpin.

Figure 10. HRMS of CHO-PTZ-Bpin.

Figure 11. HRMS of CN-PTZ-Bpin.

Figure 12. HRMS of PhCN-PTZ-Bpin.

Crystallographic data

The crystal and refinement data are summarized in Table S. The CCDC number 2176341 contains the supplementary crystallographic data for CN-PTZ-Bpin. These data can be obtained free of charge via www.ccdc.cam.ac.uk (or from the Cambridge Crystallographic Data Centre, 12 union Road, Cambridge CB21 EZ, UK; Fax: (+44) 1223- 336-033; or deposit@ccdc.cam.ac.uk). The efficient CH···O, S··· π and CH···HC interactions were observed between the adjacent molecules which led to the formation of a supramolecular network. The O-atom of boronic ester group in each CN-PTZ-Bpin molecule interact with the H-atom of alkyl group of its neighbouring molecule through the CH…O interactions (2.679 Å) which leads to the formation of 1D ordered arrangement of CN-PTZ-Bpin (Figure S13a, Figure S14a and c). Similarly, The S-atom of phenothiazine in each CN-PTZ-Bpin molecule show $S \cdots \pi$ interactions with the aromatic ring of phenothiazine moiety of its neighbouring molecule forming a slipped stack of CN-PTZ-Bpin molecules (Figure 13b, Figure S14b and d). These 1D chains were further linked together by various CH…HC (2.399 Å) intermolecular interactions forming a supramolecular network of CN-PTZ-Bpin (Figure 13c, Figure S15). As a result of these strong intermolecular interactions, a stable lattice environment could be established for CN-PTZ-Bpin.

Figure S13. Single crystal structure of **CN-PTZ-Bpin** showing intermolecular interactions (a) CH···O, (b) S··· π and (c) CH···HC.

Figure S14. (a and c) 1D-arrangement of the molecules of CN-PTZ-Bpin interacting through CH···O interactions (2.658 Å); (b and d) A slipped stacked arrangement of the molecules of CN-PTZ-Bpin showing S··· π interactions.

Figure S15. Supramolecular network of the molecules of **CN-PTZ-Bpin** in its crystalline lattice showing various intermolecular interactions.

Identification code	Rm669a
Empirical formula	$C_{22}H_{25}BN_2O_2S$
Formula weight	392.31
Temperature	293(2)K
Wavelength	0.71073
Crystal system, space group	monoclinic, <i>P</i> -2 ₁
a/(Å)	13.914
b/(Å)	8.045
c/(Å)	20.630
Alpha/(°)	90.00
Beta/(°)	99.42
Gamma/(°)	90.00
Volume	2278.1(11) A ³
Z, calculated density	4, 1.144 g/cm ³
Absorption coefficient	0.160 mm ⁻¹
F(000)	832.0
Crystal size	0.33 x 0.26 x 0.21
Θ range for data collection/(°)	6.356 to 58.804
Reflections collected	20439
Independent reflections	9886 [$R_{int} = 0.2214, R_{sigma} = 0.4008$]
Goodness-of-fit on F ²	0.905
Final R indexes [I>=2sigma(I)]	$R_1 = 0.1133, wR2 = 0.2362$

 Table S1 Crystal data and structure refinement for CN-PTZ-Bpin.

mfk-058 mfk-097

mfk-138 mfk-139

100

20

0

Figure S16. TGA curves of compounds H-PTZ-Bpin, CHO-PTZ-Bpin, CN-PTZ-Bpin, and PhCN-PTZ-Bpin.

Temperature, °C

300

400

200

Figure S17. DSC curves of compounds H-PTZ-Bpin, CHO-PTZ-Bpin, CN-PTZ-Bpin, and PhCN-PTZ-Bpin.

Figure S18. Cyclic voltammograms of compounds H-PTZ-Bpin, CHO-PTZ-Bpin, CN-PTZ-Bpin, and PhCN-PTZ-Bpin.

Figure S19. PL spectra (left) and PL decay curves (right) of non-deoxygenated (air) and deoxygenated (deox.) THF solutions of CHO-PTZ-Bpin, CN-PTZ-Bpin, and PhCN-PTZ-Bpin at room temperature.

Figure S20. PL and phosphorescence spectra of **CHO-PTZ-Bpin**, **CN-PTZ-Bpin**, and **PhCN-PTZ-Bpin** in THF at 77K. Phosphorescence was separated from fluorescence using a delay of 1ms after excitation.

Figure S21. PL spectra of low-concentrated (5 wt.%) dispersions of CHO-PTZ-Bpin, CN-PTZ-Bpin, and PhCN-PTZ-Bpin in ZEONEX under air and vacuum at room temperature.