Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Covalent functionalization of few-layer TiS₂ with tetraphenylporphyrin: toward a donor-acceptor nanohybrid featuring enhanced nonlinear saturation absorption

Yan Fang,† Hui Li,† Zhiyuan Wei,† Zihao Guan,† Naying Shan,† Lulu Fu,† Zhipeng Huang,† Mark G. Humphrey,‡ Chi Zhang*,†

[†] China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China

[‡] Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia

Section S1. Calculation of nonlinear absorption parameters.

The total absorption coefficient of a material can be written as

$$\alpha(I) = \alpha_0 + \beta I,$$
 (Equation S1)

where α_0 and β are linear absorption coefficient and nonlinear absorption coefficient, respectively. I is the incident light intensity. The corresponding light propagation model is expressed as I

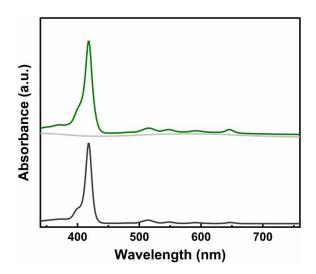
$$\frac{dI}{dz} = -(\alpha_0 + \beta I)I,$$
 (Equation S2)

As for open aperture Z-scan, the normalized transmittance can be given as1

$$T(z) = \sum_{m=0}^{\infty} \frac{\left[\frac{-\beta I_0 L_{eff}}{1 + z^2 / z_0^2}\right]^m}{(m+1)^{3/2}},$$
 (Equation S3)

where $L_{eff}=(1-e^{-\alpha_0L})/\alpha_0$ is the effective interaction length, α_0 is the linear absorption coefficient, L is the sample thickness, β is the nonlinear absorption coefficient, L is the on-axis peak intensity at the focal plane, and L0 is the Rayleigh diffraction length.

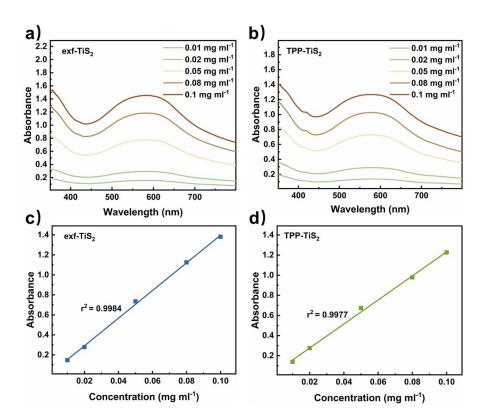
By fitting the experimental data, the nonlinear absorption coefficient β can be obtained. The imaginary part of the third-order nonlinear susceptibility ($Im\chi^{(3)}$) was calculated according to²

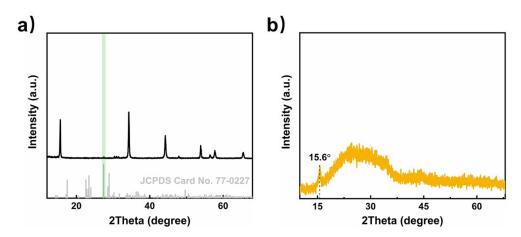

$$Im\chi^{(3)} = \left[\frac{10^{-7}C\lambda n^2}{96\pi^2}\right]\beta,$$
 (Equation S4)

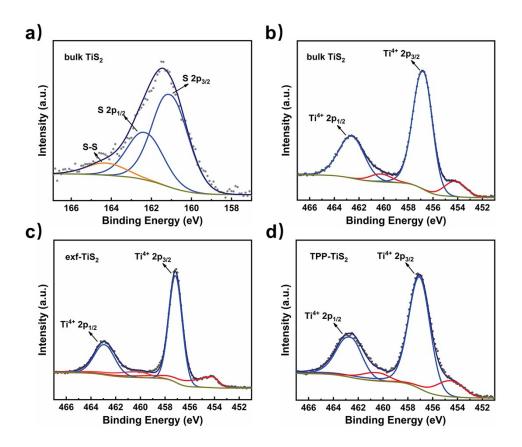
where c is the speed of light, λ is the wavelength of the laser, and n is the refractive index.

After transforming the normalized transmittance as a function of laser intensity, we can obtain the saturation intensity ($^{I}_{S}$) by fitting the curves with a nonlinear transmission model:^{3, 4}

$$T(I) = A * exp^{[ro]}(\frac{-\Delta T}{1 + I/I_s}),$$
 (Equation S5)


where T(I) is the intensity-dependent transmission. ΔT , I_s , and A are modulation depth, saturation intensity, and normalization constant, respectively.


Figure S1. UV-Vis absorption spectra of a mixture containing TPP and exf-TiS₂ (dark grey). Light grey and olive lines represent the isolated solid (the reference sample of physisorbed material) and the filtrate, respectively, after being processed likewise TPP-TiS₂. No absorption peak of TPP could be observed from the light grey line, indicating negligible physisorption.


Figure S2. Photographs of TPP, exf-TiS₂, and TPP-TiS₂ dispersions with all concentrations at 0.1 mg ml⁻¹. The top photograph exhibits the fresh dispersions after sonication for 10 minutes; the bottom one shows the dispersions after a 72-hour storage.

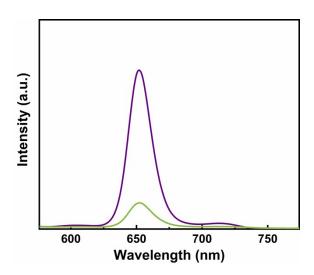
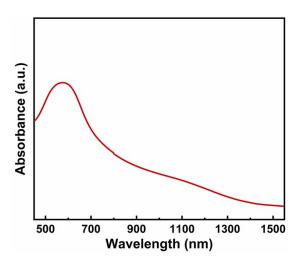
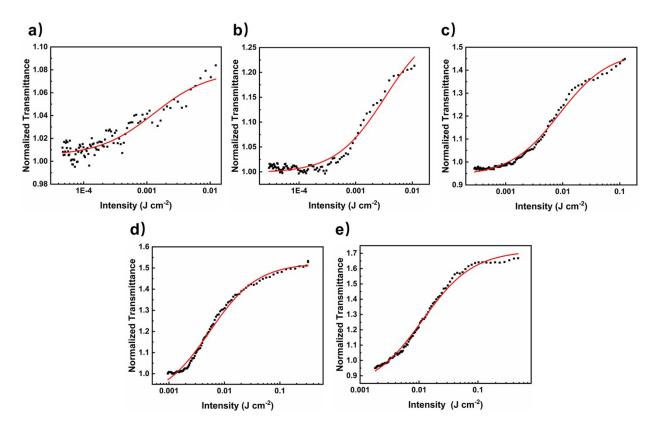
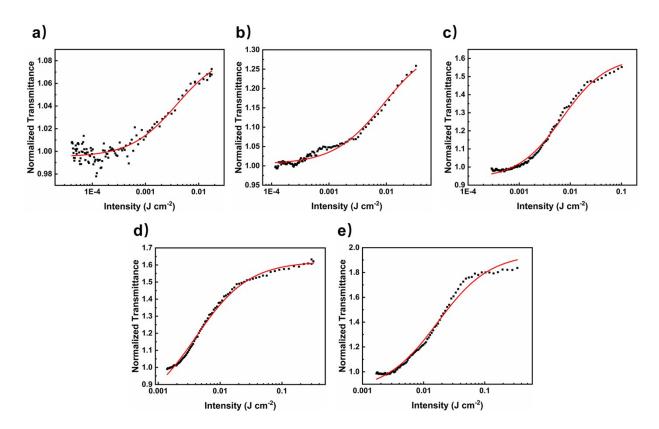
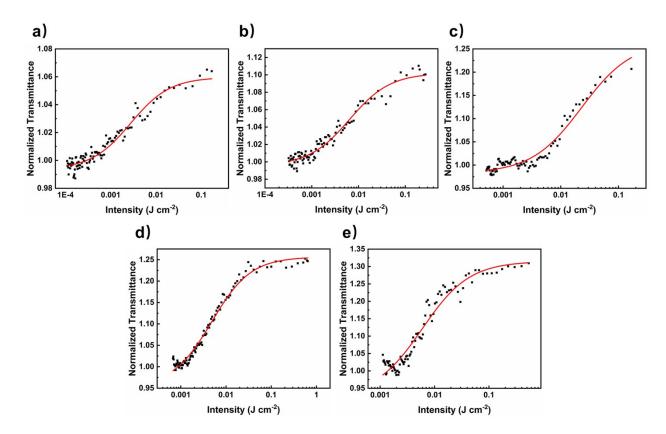

Figure S3. The absorption spectra of NMP dispersions of a) exf-TiS₂, and b) TPP-TiS₂ at different concentration. The optical density of c) exf-TiS₂ and d) TPP-TiS₂ at different concentration at 532 nm.

Figure S4. a) XRD pattern of bulk TiS_2 (black) as compared with the standard pattern of S-JCPDS No. 77-0227 (grey). b) XRD pattern of the control sample prepared by treating exf- TiS_2 with the TPP- TiS_2 functionalization process without adding TPP diazonium salts.

Figure S5. a) S 2p core-level XPS spectrum of bulk TiS_2 . Ti 2p core-level XPS spectra of b) bulk TiS_2 , c) exf- TiS_2 , and d) TPP- TiS_2 .

Figure S6. Photoluminescence spectra of TPP (purple) and the physically-blended sample (green) prepared by mixing TPP with exf-TiS₂ in the same content as the TPP-TiS₂ nanohybrid (roughly according to TGA results), obtained in NMP upon excitation at 418 nm.


Figure S7. Vis-NIR absorption spectrum of exf-TiS $_2$ in NMP.

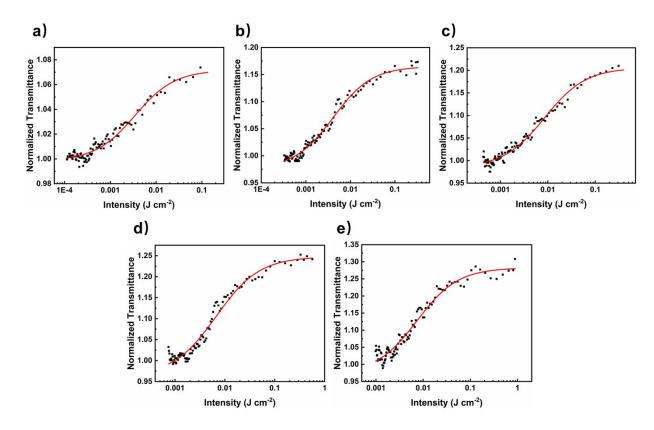

Figure S8. The relationship between normalized transmittance and the laser intensity at pulse energies of a) 6 μ J, b) 14 μ J, c) 42 μ J, d) 110 μ J, and e) 200 μ J, respectively, for exf-TiS₂ at 532 nm.

Figure S9. The relationship between normalized transmittance and the laser intensity at pulse energies of a) 6 μ J, b) 16 μ J, c) 42 μ J, d) 110 μ J, and e) 200 μ J, respectively, for TPP-TiS₂ at 532 nm.

Figure S10. The relationship between normalized transmittance and the laser intensity at pulse energies of a) 60 μ J, b) 92 μ J, c) 132 μ J, d) 220 μ J, and e) 300 μ J, respectively, for exf-TiS₂ at 1064 nm.

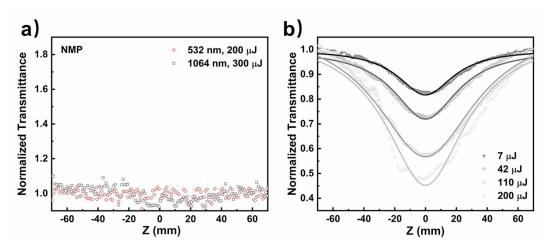
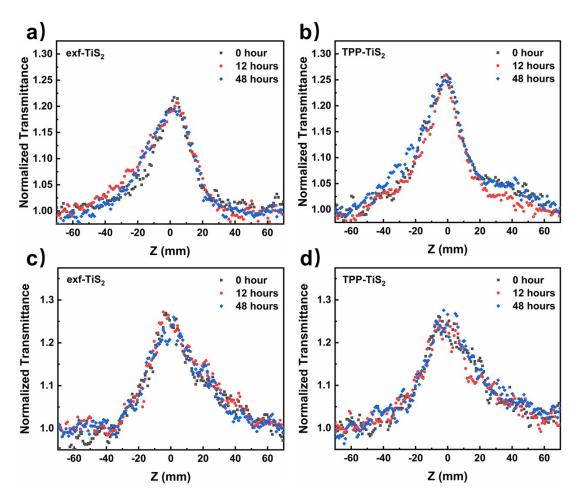


Figure S11. The relationship between normalized transmittance and the laser intensity at pulse energies of a) $60~\mu J$, b) $100~\mu J$, c) $151~\mu J$, d) $220~\mu J$, and e) $300~\mu J$, respectively, for TPP-TiS₂ at 1064 nm.


Table S1. Saturation Intensity ($^{I}_{s}$) for measured samples under different input fluence at 532 nm and 1064 nm, respectively.^a

Sample	λ _(nm)	$E_{I(\mu J)}$	I_0 (J cm ⁻²)	$I_{s \text{ (J cm}^{-2})}$	Averaged I_s (J cm ⁻²)
		6	0.0177	0.0058	
		14	0.0413	0.0060	
	532	42	0.1239	0.0071	0.0064
		110	0.3245	0.0053	_
exf-TiS ₂		200	0.5900	0.0079	
		60	0.1770	0.0052	
		92	0.2714	0.0056	_
	1064	132	0.3894	0.0057	0.0053
		220	0.6490	0.0049	
		300	0.8850	0.0050	-
		6	0.0177	0.0058	
		16	0.0472	0.0064	-
	532	42	0.1239	0.0053	0.0058
		110	0. 3245	0.0051	-
		200	0. 5900	0.0063	-
		60	0.1770	0.0050	
		110	0.3245	0.0046	_
	1064	151	0.4455	0.0053	0.0054
		220	0.6490	0.0059	_
		300	0.8850	0.0061	_

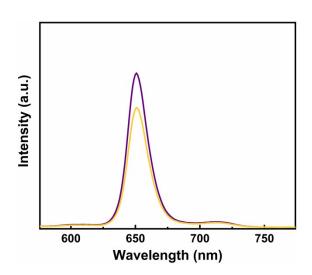

 $a\lambda$: the wavelength of incident light; E_I : the energy of the input fluence per pulse; I_0 : peak intensity; I_s : saturation intensity.

Figure S12. a) Open-aperture Z-scan data of blank solvent NMP at 532 nm under input fluence energy of 200 μ J and 1064 nm under input fluence energy of 300 μ J. b) Open-aperture Z-scan data of TPP solution in NMP under different input fluence energies at 532 nm.

Figure S13. Z-scan results of a) exf-TiS₂ and b) TPP-TiS₂ at 532 nm with 15 μ J pulsed light; c) and d) are Z-scan results of exf-TiS₂ and TPP-TiS₂ at 1064 nm with 200 μ J pulsed light.

Figure S14. Photoluminescence spectrum of TPP (purple) as compared with the controlling sample TPP/TiS₂, obtained in NMP upon excitation at 418 nm.

References

- M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Vanstryland, SENSITIVE MEASUREMENT OF OPTICAL NONLINEARITIES USING A SINGLE BEAM, *IEEE Journal of Quantum Electronics*, 1990, **26**, 760-769.
- 2 H. Li, S. Chen, D. W. Boukhvalov, Z. Yu, M. G. Humphrey, Z. Huang and C. Zhang, Switching the Nonlinear Optical Absorption of Titanium Carbide MXene by Modulation of the Surface Terminations, *ACS Nano*, 2022, **16**, 394-404.
- H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang and J. Wang, Topological insulator as an optical modulator for pulsed solid-state lasers, *Laser Photonics Rev.*, 2013, 7, 77-83.
- 4 S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei and J. Wang, Broadband Few-Layer MoS2 Saturable Absorbers, *Adv.Mater*, 2014, **26**, 3538-3544.