Electronic Supplementary Information

Cu Substitution Boosts Self-Trapped Exciton Emission in Zinc-Based Metal Halides for Sky-Blue Light-Emitting Diodes

Miao Ren,^a Shuai Zhang,^a Tong Chang,^a Jiandong Yao,^a Yilin Gao,^a Mingjian Yuan,^b Sheng cao, Jialong Zhao, Bingsuo Zou, and Ruosheng Zeng^{*a}

^aSchool of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China

^bCollege of Chemistry, Nankai University, Tianjin 300071, China

*Correspoing author: zengrsh@guet.edu.cn

Chemicals

Zinc bromide (ZnBr₂; Macklin, 99%), zinc chloride (ZnCl₂; Aladdin, 99%), cuprous bromide (CuBr; Aladdin, 99%), Cuprous chloride (CuCl; Aladdin, 99%), hydrochloric acid (HCl), hydrobromic acid (HBr; ChengDu Chron Chemicals Co,.Ltd, AR), hypophoaphoeous acid (H₃PO₂; Macklin, AR, 50 wt% in water) β phenylethylamine (PEA; Macklin, GC, 98%) and ethanol (EtOH; Guangdong Guanghua Sci-Tech Co,.Ltd, AR) were used without any purification.

Single-crystal growth of (PEA)₂ZnX₄ and Cu:(PEA)₂ZnX₄ (X = Cl or Br)

 $(PEA)_2ZnX_4$ single crystals were prepared by mixing 2 mmol PEA with 1 mmol ZnX₂ in 6 mL HX and 50 µL H₃PO₂ aqueous solution and stirring the solution at 373 K for 1 h. The stirrer was removed and the solution was cooled and crystallized at room temperature to obtain white transparent fine needle-like crystals, which were washed using ether and dried in vacuum at 343 K for 6 h. For Cu: $(PEA)_2ZnX_4$ single crystals, different proportions of CuX were added using the same method.

Fabrication of the Cu:(PEA)₂ZnX₄ thin films

Cu: $(PEA)_2ZnX_4$ single crystals were dissolved in 1 mL ethanol solution to obtain 0.2 mmol/mL of Cu: $(PEA)_2ZnX_4$ solution and stirred at room temperature for 12 h. Subsequently, the solution was transferred into a nitrogen-filled glove box and spin-coated onto ITO at 4000 r.p.m. to obtain Cu: $(PEA)_2ZnX_4$ films.

Device fabrication

The ITO coated glass substrates were ultrasonically cleaned in detergent, distilled water and ethanol in sequence. The cleaned substrates were treated in oxygen plasma for 10 min. The PEDOT: PSS solution was spin-coated on the ITO substrate at 5200 r.p.m. for 30 s and annealed at 423 K for 15 min. After cooling, the substrates were transferred into a nitrogen-filled glove box and the luminescent layer was prepared by spin-coating the (PEA)₂ZnX₄ precursor solution on the PEDOT: PSS layer. Finally, STEs-LEDs were prepared by thermal evaporation of TPBi (40 nm), LiF (1 nm) and Al (100 nm) electrodes.

Calculation

DFT calculations were performed using the Vienna ab initio Simulation Package (VASP) code¹ with the projection-augmented wave method. Structural relaxations and total-energy calculations for all the structures were performed using the generalized gradient approximation (GGA) Perdew–Burke–Ernzerhof (PBE)² as the exchange-correlation functional. The cutoff energy of the plane wave is 350 eV and the convergence accuracy is 1 x 10^{-2} eV. The atomic stress convergence criterion for ion relaxation was less than 0.05 eV/Å per atom. Finally, data processing and graphical plotting were performed using VESTA and Origin software.

Characterization

The Single-crystal X-ray diffraction (SCXRD) data were collected by Oxford Gemini S ultra-system with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 150 K. Powder X-ray diffraction (PXRD) data were obtained by Bruker diffractometer. The ultraviolet-visible-near infrared (UV-VIS-NIR) spectrophotometer (PerkinElmer Instruments, Lambda 750) was used to measure the absorption spectra. The elemental composition and chemical state were identified by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific ESCALAB 250Xi). The PL and PLE spectra, PLQY, temperature-dependent PL spectra, and PL decay were measured with a Horiba Jobin Yvon fluorolo3 spectrometer and an Edinburgh FLS 1000 fluorescence spectrometer.

Scheme S1. Schematic diagram of the synthesis of $(PEA)_2ZnX_4$ single crystals using the cooling crystallization technique (X = Cl, Br).

Fig. S1 XPS spectrum of (a) (PEA)₂ZnCl₄ (b) Cu:(PEA)₂ZnCl₄ (d) (PEA)₂ZnBr₄ and (e) Cu: (PEA)₂ZnBr₄. High-resolution spectra of (c) Cu:(PEA)₂ZnCl₄ and (f) Cu:(PEA)₂ZnBr₄ about Cu 2p.

Fig. S2 The photographs of undoped and Cu-doped $(PEA)_2ZnX_4$ single crystals under ambient light.

Fig. S3 CIE chromaticity coordinates (0.13, 0.31) of Cu: $(PEA)_2ZnCl_4$ single crystals.

Fig. S4 CIE chromaticity coordinates (0.12, 0.29) of Cu:(PEA)₂ZnBr₄ single crystals.

Fig. S5 PLQYs of (a) (PEA)₂ZnCl₄ (b) Cu:(PEA)₂ZnCl₄ (c) (PEA)₂ZnBr₄ (d) Cu:(PEA)₂ZnBr₄ single crystals.

Fig. S6 PL spectra of (a) Cu:(PEA)₂ZnCl₄ and (b) Cu:(PEA)₂ZnBr₄ (x%= $0\sim100\%$, $\lambda_{ex} = 282$

nm).

Fig. S7 PLE spectra of (a) $Cu:(PEA)_2ZnCl_4$ and (c) $Cu:(PEA)_2ZnBr_4$ at different emission wavelength (from 440 to 580 nm). PL spectra of (b) $Cu:(PEA)_2ZnCl_4$ and (d) $Cu:(PEA)_2ZnBr_4$ under different excitation wavelength (from 240 to 380 nm).

Fig. S8 Band gaps of (a) $(PEA)_2ZnCl_4$, (b) Cu: $(PEA)_2ZnCl_4$, (c) $(PEA)_2ZnBr_4$ and (d) Cu: $(PEA)_2ZnBr_4$.

Fig. S9 Density of states of (a) (PEA)₂ZnCl₄, (b) Cu:(PEA)₂ZnCl₄, (c) (PEA)₂ZnBr₄ and (d) Cu:(PEA)₂ZnBr₄.

Fig. S10 The PLQYs of (a) Cu:(PEA)₂ZnCl₄(b) Cu:(PEA)₂ZnBr₄ thin films.

Fig. S11 PL and EL spectra of (a) $Cu:(PEA)_2ZnCl_4$ and (b) $Cu:(PEA)_2ZnBr_4$.

Empirical formula	$(C_8H_{12}N)_2ZnCl_4$	$(C_8H_{12}N)_2ZnBr_4$	
Formula weight	451.56	629.36	
Temperature/K	150	150	
Crystal system	monoclinic	monoclinic	
Space group	$P2_{l}/C$	$P2_1/C$	
a/Å	7.2646(3)	7.6261(2)	
b/Å	24.6566(10)	25.3504(10)	
c/Å	11.0924(5)	10.9914(4)	
$\alpha/^{\circ}$	90	90	
β/°	90.623(1)	91.627(1)	
γ/°	90	90	
Volume/Å ³	1986.76(15)	2124.05(13)	
Ζ	4	4	
$\rho_{calc}g/cm^3$	1.510	1.968	
μ/mm^{-1}	1.774	8.681	
F(000)	928.0	1216.0	
R (reflections)	0.0301 (3621)	0.0299 (3524)	
wR2 (reflections)	0.0715 (4054)	0.0719 (4325)	

Table S1. Single crystal X-ray data of PEA₂ZnCl₄ and PEA₂ZnBr₄.

Table S2. Photophysical properties of $(PEA)_2ZnX_4$ and $Cu:(PEA)_2ZnX_4$ at room temperature.

Compound	λ (ex, max)	λ (em, max)	DI OV	stokes shift	FWHM
Compound	nm	nm	PLQI		nm
$(PEA)_2ZnCl_4$	372	468	2.7%	96	78
Cu:(PEA) ₂ ZnCl ₄	282	488	34.5%	206	75
$(PEA)_2ZnBr_4$	372	454	3.4%	82	82
Cu:(PEA) ₂ ZnBr ₄	282	486	55%	204	89

Compound	A_1	$ au_1(\mu s)$	$A_2(\mu s)$	τ_2	$\tau_{ave}\left(\mu s\right)$
$(PEA)_2ZnCl_4$	0.806	1.07	0.132	7.75	4.58
Cu:(PEA) ₂ ZnCl ₄	1.019	24.03			
$(PEA)_2ZnBr_4$	0.870	1.04	0.142	7.83	4.77
Cu:(PEA) ₂ ZnBr ₄	0.974	42.67			

Table S3. The PL lifetimes of (PEA)₂ZnX₄ and Cu:(PEA)₂ZnX₄ at room temperature.

Reference

- 1 G. Kresse, J. Furthmuller, Phys Rev B Condens Matter 1996, 54, 11169.
- 2 J. P. Perdew, K. Burke, M. Ernzerhof, Phys Rev Lett 1996, 77, 3865.