Supporting Information for

Supramolecular Fe^{II}₄L₄ cage for fast ammonia sensing

Weiyang Li^a, Li Sun^a, Cuilian Liu,^a Aurelian Rotaru^b, Koen Robeyns^a, Michael Singleton,^a Yann Garcia^{*a}

^a Institute of Condensed Matter and Nanosciences, Molecules, Solids, Reactivity (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium

^bDepartment of Electrical Engineering and Computer Science and MANSiD Research Center, "Stefan cel Mare" University, University Street, 13, Suceava 720229, Romania

Contents

General information	S3
Synthesis of 2,4,6-tris-(4-aminophenyl)triazine (TATP)	S4-S5
Synthesis of MOC-1	S5-S6
Sensing experimental device and cyclicality test for the sensor	S6
Data analysis methods	S7
Calculation of gas concentration for sensitivity experiment	S8
Single-crystal X-ray diffraction analyses	S9
Fig. S1 Powder XRD for MOC-1	S10
Fig. S2 SEM image for MOC-1	S10
Fig. S3 Full XPS spectrum for MOC-1	S10
Fig. S4 Fe 2p high resolution XPS spectrum for MOC-1	S11
Fig. S5 FT-IR for MOC-1	S11
Fig. S6 TGA curve of MOC-1	S11
Fig. S7 Digital photographs of MOC-1 after adsorbstion12 analytes (a) and the corresponding diffuse reflectance spectrum (b)	S12
Fig. S8 PCA pattern for selectivity	S12
Fig. S9 Sensor performance under different humidity	S12
Fig. S10 Interference of various analytes vapours on the colorimetric response of NH _{3(g)} at r.t	
Fig. S11 Digital photographs in the recyclability test	S13
Fig. S12 Powder XRD for regenerated MOC-1	S13
Fig. S13 ⁵⁷ Fe Mössbauer spectra for regenerated MOC-1	S14
Fig. S14 Plots of the Euclidean distance vs. NH ₃ concentration	S14
Fig. S15 Thermochromic property of MOC-1	S14
Fig. S16 Schematic diagram of the proposed discoloration mechanism	S15
Fig. S17 Powder XRD for MOC-1@NH ₃	S15
Application of MOC-1 sensor for monitoring pork spoilage	S16
Fig. S18 Plots of NH _{3(g)} concentration in different time internals	S16
Table S1 Crystallographic parameters for MOC-1	S17
Table S2 HCA data for selectivity	S18-S19
Table S3 PCA data for selectivity	S19
Table S4 Response time data for NH _{3(g)} and humidity	S20
Table S5 Different analyte vapours interference experiment database	S21-S23
Table S6 Recyclability data for NH _{3(g)}	S24
Table S7 Sensitivity data for NH _{3(g)}	S25
Table S8 Comparison of the sensing performances	S26
Table S9 HCA data for pork spoilage experiment	S27
References	S28

General information

All chemicals were purchased from commercial companies and used as supplied without further purification. NMR spectra were recorded on a Bruker AVANCE 300MHz spectrometer. Proton chemical shifts (δ) are reported relative to the solvent residual peak (2.50 ppm for dimethyl sulfoxide). High resolution electrospray ionization mass spectra (HRMS) were measured on a Q-Exactive ThermoFisher spectrometer. Elemental analyses (C, H, and N) were measured by MEDAC Ltd, UK. Thermogravimetric analyses (TGAs) were performed in N_{2(g)} (100 mL min⁻¹) at a heating rate of 10 °C min⁻¹ from 25 °C to 850 °C using a Mettler Toledo TGA/SDTA 851e analyzer. Fourier transformed infrared (FT-IR) spectroscopy were recorded by a Equinox 55 (Bruker) equipped with an ATR modulus and an MCT detector. Diffuse reflectance spectra (DRS) were performed with a PerkinElmer Lambda 9 UV/vis/NIR spectrophotometer equipped with a 60 mm integrating sphere and converted into absorption spectra by using the Kubelka–Munk function, using BaSO₄ as a reference. Raman Spectrum were obtained on a Horiba LabRAM HR Evolution with $\lambda = 514$ nm laser source equipped with temperature controller. The microstructure was studied by field emission scanning electron microscopy (SEM) using a Mira3-TESCAN microscope from Oxford Instruments Inc. Powder X-ray diffraction (PXRD) patterns were collected on a D8-Advance diffractometer (Bruker, Germany) with Cu K α radiation ($\lambda = 1.5148$ Å). XPS analyses were carried on SSI-Xprobe (SSX 100/206) photoelectron spectrometer from Surface Science Instruments (USA) using Al Ka as the X-ray source. All binding energies were calculated according to the C 1s peak fixed at 284.4 eV. Magnetic susceptibility for microcrystalline MOC-1 was measured on a Quantum design MPMS-5s SQUID magnetometer under an applied field of 1 T. Magnetic data were corrected for the sample holder and diamagnetic contributions. ⁵⁷Fe Mössbauer spectra were measured in transmission geometry with a constant acceleration mode conventional spectrometer equipped with a 50 mCi ⁵⁷Co(Rh) source and a Reuter Stokes proportional counter. The powdered samples were sealed in aluminum foil and spectra were recorded at 298 K. The spectra were fitted using Recoil 1.05 Mössbauer Analysis software and isomer shift values are given with respect to α -Fe at room temperature. NH₃ concentration detection was performed with a commercial ammonia gas detector (smart sensor, AR8500). The resolution is 0.1 ppm and the measuring range is 0~100 ppm. Relative humidity was monitored with a hygrometer from TFA Dostmann.

Synthesis of triazine-based subcomponent ligand 2,4,6-tris-(4-aminophenyl)triazine (TATP)

0.295 g (2.5 mmol) 4-aminobenzonitrile was placed in a round bottom flask at 0 °C. Then, trifluoromethanesulfonic acid (1 mL, 11.1 mmol) was added dropwise for 25 min at 0 °C. The mixture was stirred for 24 h under $Ar_{(g)}$ at room temperature. After that, distilled water (10 mL) was poured into the mixture and NaOH (2M) was added dropwise until the pH of the solution reached 7. The resultant light-yellow product was filtered and washed with distilled water several times, and then dried in a vacuum oven overnight. Yield: 0.239 g, 81%. ¹H NMR (DMSO-d₆, 300 MHz, ppm) δ : 8.3-8.4 (s, 6H), 6.73-6.64 (d, 6H), 5.91 (s, 6H). ¹³C NMR (DMSO-d₆, 75 MHz, ppm) δ : 169.7, 153.3, 130.5, 123.2, 113.4. HRMS (ESI, *m/z*): [M+H]⁺ calcd for C₁₈H₁₈N₄: 355.16. Found: 355.16. The spectra are shown below.

¹³C NMR spectrum for TATP.

6

Mass spectrum for TATP.

Scheme. Formation of MOC-1 in CH₃CN through subcomponent self-assembly approach.

TATP (35.4 mg, 0.1 mmol), 1-methyl-2-imidazolecarboxaldehyde (33 mg, 0.3 mmol) and $Fe(BF_4)_2 \cdot 6H_2O$ (34 mg, 0.1 mmol) were added to a Schlenk flask with acetonitrile (30 mL). The reaction mixture was stirred at 65 °C overnight under argon atmosphere and then cooled to room temperature. The resulting solution was filtered and vapor-diffused with diethyl ether. After several days, single crystals of **MOC-1** were obtained. Yield: 18.9 mg, 22%. When a large amount of diethyl ether was directly added to the solution, a light brown microcrystalline precipitate appeared immediately. It was then filtered, washed with excess diethyl ether. Yield: 63.6 mg, 74%. ESI-MS: (m/z): $[Fe^{II}_4L_4]^{8+}$: 343.23. Elemental analysis of microcrystalline **MOC-1**: calcd. for $Fe^{II}_4L_4(BF_4)_8 \cdot 9H_2O$, $C_{144}H_{120}N_{48}Fe_4B_8F_{32} \cdot 9H_2O$: C 48.01%, H 3.86%, N 18.66%; found: C 47.91%, H 3.73%, N 18.16%.

HRMS of **MOC-1** showing the $[Fe^{II}_4L_4]^{8+}$ peaks and the corresponding simulated isotopic patterns.

Sensing experiment device and cyclability test for the sensor

A home-made setup was assembled to detect different analytes (as shown below). About 8 mg of **MOC-1** and 0.5 mL different analytes solution were added into two small glass bottles, and then put in a glass cell culture dish. These were covered by a lid, sealed with parafilm, and incubated under ambient conditions. The discoloration photos were taken at a specific time by iPhone XR (iOS 15.4.1) with the setting of 'photo mode' 'tap to focus' and 'without flash'. The sensing experiments were carried out at room temperature (25 °C) and ambient relative humidity (RH) was about 25%. To control the RH in the sealed dish, another container with various amounts of water was put inside and the RH was monitor by hygrometer. In the cyclability study, after adsorbing $NH_{3(g)}$ molecules, **MOC-1** was termed as **MOC-1**@NH₃. **MOC-1**@NH₃ was placed into a vacuum oven at 70 °C overnight to regenerate **MOC-1** and this adsorption and desorption process was repeated five times. All sensing experiments used **MOC-1** as a microcrystalline powder and were all performed in triplicate.

Experimental set up for the colorimetric sensor MOC-1.

Data analysis methods

After obtaining the discoloration photographs, Color Name App in iPhone XR was employed to convert the photos into digital information, which included RGB (red, green, and blue) and HSB1 (hue, saturation, and brightness). These data were analyzed by standard chemometric methods using hierarchical clustering analysis (HCA) and principal component analysis (PCA). HCA, a multivariate statistical analysis method whose main purpose is to divide the analytes into discrete groups based on the characteristics of their respective responses. It involves measuring the distance or similarity between objects and their clustering. PCA is another powerful and effective statistical tool using orthogonal transformation to convert a set of possibly related observations into a set of principal components and the values of these principal components are linearly uncorrelated. In this paper, HCA and PCA was performed on the average values of RGB and HSB1 in triplicate. Euclidean distance¹, representing the total color response, was calculated by the following equation:

Euclidean distance =
$$\sqrt{(R - R_0)^2 + (G - G_0)^2 + (B - B_0)^2 + (H - H_0)^2 + (S - S_0)^2 + (B1 - B1_0)^2}$$

Where values of *R*, *G*, *B*, *H*, *S*, *B1* are color of sensor in different conditions and R_0 , G_0 , B_0 , H_0 , S_0 , B_1_0 are the control sensor.

Calculation of NH₃ gas concentration in sensitivity experiment

The concentration in ppm was calculated according to the following Eq.²

$$C(ppm) = \left(\frac{10 \ CRTd_v V_{injected}}{PM_w V_{chamber}}\right)$$

where *C* (*ppm*) is concentration of NH_{3(g)} in *ppm*, *C* (wt%) is NH₃ aqueous solution concentration, *R* is the gas constant, *T* is the temperature in absolute scale, d_v is the liquid mass density (g/cm³), $V_{injected}$ is the injected volume in μ L, *P* (atm) is the pressure inside the chamber, M_w is the molecular weight, (g/mol), $V_{chamber}$ is the volume of chamber. In this work, *C* is 28%; *P* is 1 atm; M_w is 17 g/mol; *T* is 298 K. We used a home-made chamber and the $V_{chamber}$ is 26 L (32x27x32 cm), as shown below. The sensor dish is mounted on top of the chamber. After injecting the NH₃ aqueous solution to the chamber by injection syringe, a heating source was used to evaporate the solution to gaseous NH₃.

The schematic diagram of the home-made 26 L seal chamber for sensitivity experiment.

Single-crystal X-ray diffraction analyses

X-ray diffraction analyses for MOC-1 was carried on MAR345 image plate using Mo-Ka radiation ($\lambda = 0.71073$ Å), generated by an Incoatec IµS generator equipped with Montel Mirrors. Prior to data collection the crystals were flash frozen at 100 K. Data integration and reduction were performed with CrysAlis^{PRO} (CrysAlis^{PRO} Software System, Vol. Rigaku Corporation: Oxford, UK, 2015.) and the implemented absorption correction was applied. The structures were solved by SHELXT and refined by full-matrix least squares on F² using SHELXL2018/3. All non-hydrogen atoms were refined anisotropically and hydrogen atoms were added in calculated positions and refined in riding mode. The crystals of MOC-1 were quite small and unstable. As diethyl ether was used as anti-solvent, crystals readily redissolved into the mother liquid when exposed to air. To be able to manipulate the crystals prior to data collection, a solvent transfer to THF was performed, assuring the necessary time to isolate and harvest the crystals. Although more data was collected in the low temperature measurements, the final resolution limit was set at 1.21 Å, beyond which the crystal diffracted poorly. The crystal also shows a single large cavity representing 26% of the unit cell volume, the electron density inside this cavity was taken into account by the SQUEEZE procedure in PLATON. All ring systems and their substituents were refined to be planar and the aromatic benzene rings were constraint to be perfect hexagons. The BF4⁻ anions were idealized and refined as rigigd groups allowed to rotate and move around the central boron atom. Isotropic and rigid bond restraints were used on all non-metal atoms. The extensive use of restraints make that only global features should be discussed. Final crystallographic data and refinement values for MOC-1 are listed in Tables S1. CCDC 2157667 contains the supplementary crystallographic data for this paper.

SHELXT:

Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.

Crysalis^{PRO}:

Rigaku (2015). CrysAlisPro Software System, Version 1.171.38.41. Rigaku Oxford Diffraction

PLATON SQUEEZE:

Spek, A. L. (2015). Acta Cryst. C71, 9-18.

Fig. S1 Powder XRD and simulated PXRD for MOC-1.

Fig. S2 SEM image for MOC-1.

Fig. S3 Full XPS spectrum of MOC-1.

Fig. S6 TGA curve of MOC-1 and the abscissa of the pink line is 200 °C.

Fig. S7 Digital photographs of **MOC-1** after adsorption of 12 analytes (a) and corresponding diffuse reflectance spectra at r.t (b).

Fig. S8 PCA scree plot (a) and PCA score plot (b) of $NH_{3(g)}$ (red point) and 12 analytes (blue points) at r.t.

Fig. S9 Sensor performance under different relative humidity levels alone and MOC-1@ NH_3 under 25% (normal condition) and 65% relative humidity.

Fig. S10 Interference of various analytes vapours on the colorimetric response of $NH_{3(g)}$ at r.t.

		Regenerated
	MOC-1@NH ₃	MOC-1
1 st cycle		*
2 nd cycle		-
3 rd cycle		•
4 th cycle		
5 th cycle		-

Fig. S11 Digital photographs of MOC-1@NH₃ and the regenerated MOC-1 in the recyclability test.

Fig. S12 Powder XRD for regenerated MOC-1.

⁵⁷Fe Mössbauer parameters for regenerated **MOC-1**.

Sample	Snin State	۸/۸	Mössbauer parameters			
	Fe(II)	(%)	δ (mm s ⁻¹)	∆E _Q (mm s ⁻¹)	Г/2 (mm s-1)	
Regenerated	LS (blue)	33	0.23(6)	0.76(1)	0.26(1)	
MOC-1	HS-1 (red)	43	0.99(3)	1.33(5)	0.21(5)	
	HS-2					
	(magenta)	24	1.26(6)	2.58(1)	0.23(1)	

Fig. S14 Plots of the Euclidean distance of MOC-1 after adsorbing different concentration $NH_{3(g)}$ for 1 h at r.t. The red line is the calibration curves. The noise was defined as the standard deviation among the control (exposure to air).

Fig. S15 Thermochromic property of MOC-1.

Fig. S16 Suggested discoloration mechanism for $NH_{3(g)}$. Green dots represent hydrogen bonding.

Fig. S17 Powder XRD for MOC-1@NH_{3.}

Application of MOC-1 sensor for monitoring pork spoilage

MOC-1 sensor (5 mg) in a small dish was glued on the top of a conical flask (250 mL) containing 45 g of fresh pork (bacon) bought in a local supermarket. The bottle was sealed by cap and parafilm and stored at 4 °C, as shown below. At specific time intervals (12 h, 36 h, 48 h, 60 h, 72 h, 84 h, 96 h), photographs of the sensor were taken and these data in Table S8 were analyzed by PCA. In addition, at each time interval, a commercial NH₃ gas sensor (AR8500) was used to detect the NH₃ gas concentration in the flask. Noted that in the process of cold chain transportation, the types, packaging, transportation conditions and weights of pork are different, so the experimental results of the spoilage of different pork may vary to some extent. More comprehensive experiments are needed in the future to study the range of MOC-1 in food safety assessment, but the sensor material and the corresponding analytical methods show great potential.

Experimental set up for monitoring pork spoilage.

Fig. S18 Plots of $NH_{3(g)}$ concentration at different time internals

 Table S1. Crystal data and structure refinement details for MOC-1.

Formula	$C_{144}H_{120}Fe_4N_{48}(BF_4)_8 \cdot [+solvent]$							
 Formula weig	ght			3440.75				
Radiation (A	À)			ΜοΚ _α (0.71073)				
Crystal syste	em			Mono	oclinic			
 Space group	р]	a			
 T (K)				1	00			
 a (Å)				37.2	19(3)			
b (Å)				60.8	58(2)			
 c (Å)				37.23	32(19)			
α (°)				ç	00			
 β (°)				109.5	597(7)			
γ (°)				9	90			
 V (Å ³)				79448(9)				
Ζ				1	.6			
ρ_{calc} (g.cm ⁻³)			1.151				
θ range (deg	g)			2.1420 to 16.5170				
 F(000)				28032				
 Crystal size (n	nm)			0.15×0.15×0.10				
Absorption coefficie	ent (mm	-1)		0.369				
 Data/restraints/par	ameters		43905/53460/7201					
 Goodness of fit	on F ²			1.1	168			
 R_{I}^{a}, wR_{2}^{b} (I>2a)	σ(I))			0.0943	, 0.2096			
 R_1^a, wR_2^b (all data)				0.1635	, 0.2499	1		
MOC 1	B	S	н	R1				
1	80	10	42	54				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				14	47	57		
2 146 94 3 140 92				14	45	54		
average	141.33	92	78	12.67	44.67	55		
Water	R	G	B	S	H	B1		
1	138	80	10	42	54			

Table S2HCA database for MOC-1 and 13 analytes.

2	137	88	79	9	42	53
3	124	76	68	8	45	48
average	133.00	84.67	75.67	9.00	43.00	51.67
Chloroform	R	G	B	S	Н	B 1
1	144	88	78	9	45	56
2	147	91	79	10	46	57
3	145	89	80	8	44	56
average	145.33	89.33	79	9	45	56.33
Ammonia	R	G	B	S	Н	B 1
1	108	71	88	342	32	42
2	110	71	88	344	35	43
3	106	68	86	332	35	41
average	108.00	70.00	87.33	339.33	34.00	42.00
Acetone	R	G	B	S	H	B1
1	137	84	76	7	44	53
2	149	94	84	9	43	58
3	135	81	75	5	44	52
average	140.33	86.33	78.33	7	43.67	54.33
Dichloromethane	R	<u> </u>	B	5	H 45	<u>BI</u>
1	12/	76	69	10	45	49
2	129	80	/0	10	45	50
3	132	80	/3	/	44	50
	129.33	/8,6/	/0.6/	8	44.6/	50 D1
Hydrazine 1	K	02	B 70	12	H	55
	141	95	79	13	43	52
2	134	82	71	10	47	51
J	131	86.67	73.67	10	45	52.67
Methanol	P	<u> </u>	73.07 R	12 S	ч <u>у</u> Н	32.07 R1
1	120	0 0	72	0	11	50
	130	80	01	0 5	44	50
2	139	80	81	5	41	54
3	144	91	84	6	41	56
average	137.67	85.67	79	6.33	42	53.33
Ethanol	K	G	B	S	H	BI
1	128	75	68	6	46	50
2	130	77	69	7	46	50
3	124	72	65	7	47	48
average	127.33	74.67	67.33	6.67	46.33	49.33
Toluene	R	G	B	S	Η	B 1
1	150	98	80	15	46	58
2	146	94	77	14	47	57
3	149	96	79	14	46	58
average	148.33	96	78.67	14.33	46.33	57.67
Ethyl acetate	R	G	В	S	Н	B1
1	134	81	74	6	44	52
2	136	82	76	5	44	53
3	140	87	79	7	43	54
average	136.67	83.33	76.33	6	43.67	53
Triothylamina	D	<u> </u>	R	S S	чэ.07 Н	 R1
1	126	02	70	0	42	52
	130	00	/ð	0	42	55
<i>2</i>	144	94	83	10	42	56

3	140	90	81	9	42	54
average	140	90	80.67	9	42	54.33
Diethylenetriamine	R	G	B	S	Н	B1
1	143	90	81	8	43	56
2	139	85	76	8	45	54
3	132	78	70	7	46	51
average	138	84.33	75.67	7.67	44.67	53.67
1,2-Diaminocyclo-	R	G	B	S	Н	B1
hexane						
1	124	72	63	8	49	48
2	125	72	64	7	48	49
3	138	85	76	8	44	54
average	129	76.33	67.67	7.67	47	50.33

 Table S3
 PCA database for MOC-1 and 13 analytes.

Analytes	R	G	В	S	Н	B 1
MOC-1	141.33	92	78	12.67	44.67	55
Hydrazine	135.33	86.67	73.67	12	45	52.67
Triethylamine	140	90	80.67	9	42	54.33
1,2-Diaminocyclohexane	129	76.33	67.67	7.67	47	50.33
Diethylenetriamine	138	84.33	75.67	7.67	44.67	53.67
Methanol	137.67	85.67	79	6.33	42	53.33
Ethanol	127.33	74.67	67.33	6.67	46.33	49.33
Chloroform	145.33	89.33	79	9	45	56.33
Acetone	140.33	86.33	78.33	7	43.67	54.33
Ethyl acetate	136.67	83.33	76.33	6	43.67	53
Dichloromethane	129.33	78,67	70.67	8	44.67	50
Toluene	148.33	96	78.67	14.33	46.33	57.67
Water	133.00	84.67	75.67	9.00	43.00	51.67
Ammonia	108.00	70.00	87.33	339.33	34.00	42.00

MOC-1@NH₃ Time (s) Times R Н S **B1** B G

Table S4 Response time database for ammonia and humidity.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	3	155	107	105	2	32	60
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	119	76	78	341	35	45
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	118	71	73	342	36	43
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	3	123	71	74	355	36	43
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	109	70	80	354	35	42
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	113	74	83	344	34	44
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	3	117	79	86	348	32	45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	114	75	83	347	34	44
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	112	72	81	353	35	43
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30	3	121	82	91	346	32	47
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1	106	71	85	339	33	41
		2	105	67	82	346	36	41
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	60	3	103	68	82	335	33	40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	102	64	82	338	37	40
90 3 110 70 88 332 36 43 1 115 84 94 351 26 45 2 108 78 87 340 27 42 3 110 83 92 337 24 43 1 113 83 90 345 26 44 2 110 80 88 337 27 43 180 3 114 84 91 351 26 44 2 102 67 93 329 36 41 240 1 106 71 96 343 36 43 240 1 138 90 77 12 44 55 2 141 93 80 11 44 56 35% 3 139 91 78 12 45 55 3<		2	105	65	84	341	38	41
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	90	3	110	70	88	332	36	43
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	115	84	94	351	26	45
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.0	2	108	78	87	340	27	42
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	120	3	110	83	92	337	24	43
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	113	83	90	345	26	44
180 3 114 84 91 351 26 44 1 106 71 96 343 36 43 2 102 67 93 329 36 41 3 104 72 97 333 35 43 Humidity Humidity 2 141 93 80 11 44 56 35% 1 138 90 77 12 44 55 2 141 93 80 11 44 56 35% 3 139 91 78 12 45 55 2 140 92 81 13 43 50 65% 3 138 88 78 12 40 53 2 140 90 81 11 42 51 85% 3 138 88	100	2	110	80	88	337	27	43
1 106 71 96 343 36 43 2 102 67 93 329 36 41 3 104 72 97 333 35 43 Humidity 1 138 90 77 12 44 55 2 141 93 80 11 44 56 35% 3 139 91 78 12 45 55 2 140 92 81 13 43 50 65% 3 138 88 78 12 40 53 65% 3 138 88 78 12 40 53 2 140 90 81 11 42 51 85% 3 138 88 79 12 41 53 MOC- 1 106 71 96 343 36	180	3	114	84	91	351	26	44
240 2 102 67 93 329 36 41 3 104 72 97 333 35 43 Humidity 1 138 90 77 12 44 55 2 141 93 80 11 444 56 35% 3 139 91 78 12 45 55 2 140 92 81 13 43 50 65% 3 138 88 78 12 40 53 65% 3 138 88 78 12 40 53 2 140 90 81 11 42 51 85% 3 138 88 79 12 41 53 0C- 1 106 71 96 343 36 43 102 102 67 93 329 </th <th></th> <th>1</th> <th>106</th> <th>71</th> <th>96</th> <th>343</th> <th>36</th> <th>43</th>		1	106	71	96	343	36	43
240 3 104 72 97 333 35 43 Humidity 1 138 90 77 12 44 55 2 141 93 80 11 444 56 35% 3 139 91 78 12 45 55 1 136 89 75 11 45 52 2 140 92 81 13 43 50 65% 3 138 88 78 12 40 53 2 140 90 81 11 44 53 65% 3 138 88 78 12 40 53 85% 3 138 88 79 12 41 53 43 106 71 96 343 36 43 1 106 71 96 343 36	• 40	2	102	67	93	329	36	41
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	240	3	104	72	97	333	35	43
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				Humi	dity			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	138	90	77	12	44	55
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 - 2 (2	141	93	80	11	44	56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35%	3	139	91	78	12	45	55
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	136	89	75	11	45	52
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<=0 (2	140	92	81	13	43	50
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	65%	3	138	88	78	12	40	53
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	137	89	77	11	44	53
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	070/	2	140	90	81	11	42	51
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	85%	3	138	88	79	12	41	53
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MOC-	1	106	71	96	343	36	43
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1@NH ₃	2	102	67	93	329	36	41
MOC- 1@NH3 65%11057096344364310165943393641310473983333442	25%	3	104	72	97	333	35	43
MOC- $1@NH_3$ 2 101 65 94 339 36 41 3 104 73 98 333 34 42		1	105	70	96	344	36	43
1@NH3 3 104 73 98 333 34 42	MOC-	2	101	65	94	339	36	41
	1@NH ₃ 65%	3	104	73	98	333	34	42

 Table S5
 Different analyte vapours interference experiment database.

MOC-1@water	R	G	B	S	Н	B1
1	147	90	81	11	46	58
2	149	94	80	10	43	56
3	152	93	79	9	46	58
average	149.33	92.33	80.00	10.00	45.00	57.33
MOC-1@water/ammonia	R	G	B	S	Н	B 1

1	132	82	109	327	37	51
2	136	86	110	335	36	53
3	137	85	112	328	37	53
average	135.00	84.33	110.33	330.00	36.67	52.33
MOC-1@chloroform	R	G	B	S	Н	B1
1	143	99	79	11	46	58
2	144	94	76	10	46	57
3	143	96	78	10	45	57
average	143.33	96.33	77.67	10.33	45.67	57.33
MOC-1@chloroform/ammonia	R	G	B	S	H	B 1
1	135	86	110	330	36	52
2	133	85	109	335	36	52
3	139	89	115	326	35	54
average	135.67	86.67	111.33	330.33	35.67	52.67
MOC-1@acetone	R	G	B	S	H	<u>B1</u>
1	149	101	92	12	39	57
2	147	99	88	11	39	57
3	150	99	90	10	41	56
average	148.67	99.67	90.00	11.00	<u>39.67</u>	56.67
MOC-1@acetone/ammonia	R	G	B	8	H	BI
1	149	96	121	337	35	58
2	147	94	117	330	36	57
3	133	81	105	336	39	52
average	143.00	90.33	114.33	334.33	36.67	55.67
MOC-1@hydrazine	K	G	B	<u> </u>	H 42	BI
1	151	93	/9	12	42	<u> </u>
2	154	89	81	10	44	58
3	152.00	92	/1	9	43	<u> </u>
Average MOC 1@bydrazino/ammonia	132.00 D	91.55 C	//.00 P	10.55 S	43.00 U	
	120	01	105	226	27	40
1	130	81	105	225	3/	49
2	129	82	106	325	36	50
3	130	81	105	330	37	55
average	129.67	81.33	105.33	330.33	36.67	51.33
MOC-1@ethanol	R	G	B	S	H	<u>B1</u>
1	150	102	92	10	38	58
2	148	98	87	11	40	56
3	152	99	89	9	40	55
average	150.00	99.67	89.33	10.00	39.33	56.33
MOC-1@ethanol/ammonia	R	G	B	S	H	B 1
1	103	66	72	345	35	40
2	113	72	77	347	36	44
3	93	56	65	350	39	36
average	103.00	64.67	71.33	347.33	36.67	40.00
MOC-1@ethyl acetate	R	G	B	S	Н	B 1
1	142	93	87	10	40	54
2	144	93	86	10	41	55
3	145	98	89	9	38	56
average	143.67	94.67	87.33	9.67	39.67	55.00
MOC-1@athyl acatato/ammonia	D	С.,	R	9.07 C	U	R1
	102	U	70	241	20	40
	102	69	/9	541	52	40

2	110	79	88	342	28	43
3	113	77	89	335	31	44
average	108.33	75.00	85.33	339.33	30.33	42.33
MOC-1@diethylenetriamine	R	G	B	S	Н	B 1
1	149	96	81	10	44	55
2	149	95	86	9	45	54
3	153	98	84	11	46	55
average	150.33	96.33	83.67	10.00	45.00	54.67
MOC-1@diethylenetriamine/	R	G	B	S	Н	B1
1	134	84	107	325	37	52
2	134	82	107	331	37	51
3	130	89	110	335	35	53
average	133.67	85.00	107.00	330 33	36.33	52.00
MOC-1@triethylamine	R	65.00 G	B	<u> </u>	H	B1
1	147	96	80	12	42	53
2	143	98	83	10	44	55
3	148	101	81	13	45	54
average	146.00	98.33	81.33	11.67	43.67	54.00
MOC-1@triethvlamine/ammonia	R	G	B	S	H	B1
1	140	94	120	328	34	56
2	132	84	110	325	36	51
3	138	90	113	334	34	54
average	136.67	89.33	114.33	329.00	34.67	53.67
MOC-1@1,2-diaminocyclohexane	R	G	B	S	H	B1
1	152	102	85	11	45	57
2	154	101	83	10	43	53
3	151	99	84	12	42	55
average	152.33	100.67	84.00	11.00	43.33	55.00
MOC-1@1,2-	R	G	В	S	Н	B 1
diaminocyclohexane/ ammonia						
1	131	79	104	331	39	51
2	133	82	107	325	38	52
3	136	87	109	334	36	53
average	133.33	82.67	106.67	330.00	37.67	52.00
MOC-1@methanol	R	G	B	S	H	B 1
1	150	98	85	11	43	58
2	147	94	82	11	43	56
3	149	98	84	12	43	58
average	148.67	96.67	83.67	11.33	43.00	57.33
MOC-1@methanol/ammonia	R	G	B	S	H	B 1
1	115	72	81	347	37	45
2	109	67	76	340	38	42
3	112	73	82	346	34	43
average	112.00	70.67	79.67	344.33	36.33	43.33
MOC-1@toluene	R	G	B	S	H	B 1
1	147	100	81	14	45	55
2	146	99	83	15	42	56
3	150	102	84	16	44	58

average	147.67	100.33	82.67	15.00	43.67	56.33
MOC-1@toluene/ammonia	R	G	B	S	Н	B1
1	135	86	110	330	36	52
2	133	85	109	339	36	52
3	139	89	115	336	35	54
average	135.67	86.67	111.33	335.00	35.67	52.67
MOC-1@dichloromethane	R	G	B	S	Н	B1
1	146	98	87	11	40	57
2	148	95	82	12	42	55
3	151	99	84	13	44	59
average	148.33	97.33	84.33	12.00	42.00	57.00
MOC-1@dichloromethane/	R	G	В	S	Н	B1
ammonia						
1	132	83	107	330	37	51
2	129	81	106	338	37	50
3	133	85	109	332	36	52
average	131.33	83.00	107.33	333.33	36.67	51.00

Table S6 Recyclability database for five adsorption and desorption cycles.

	times	R	G	B	S	H	B1
	1	116	81	97	325	30	45
MOC-1@NH ₃	2	104	72	87	334	30	40
(1 st cycle)	3	110	76	92	327	30	43
Regenerated	1	110	71	79	342	35	43
MOC-1	2	112	75	81	354	33	43

(1 st cycle)	3	116	78	85	345	32	45
	1	195	125	106	12	45	76
MOC-1@NH ₃	2	201	129	110	12	45	78
(2 nd cycle)	3	194	120	105	10	45	76
Regenerated	1	124	109	88	27	34	52
MOC-1	2	120	112	90	28	34	53
(2 nd cycle)	3	132	109	88	26	34	52
	1	105	74	90	327	29	41
MOC-1@NH ₃	2	101	71	86	334	29	39
(3 rd cycle)	3	117	82	99	326	29	45
Regenerated	1	117	92	71	24	42	48
MOC-1	2	127	95	73	24	42	49
(3 rd cycle)	3	125	94	73	24	41	49
	1	122	82	89	341	32	47
MOC-1@NH ₃	2	137	96	103	355	29	53
(4 th cycle)	3	128	87	94	345	32	50
Regenerated	1	124	109	88	27	34	52
MOC-1	2	120	112	90	28	34	53
(4 th cycle)	3	132	109	88	26	34	52
	1	132	93	111	333	29	51
MOC-1@NH ₃	2	123	88	104	326	28	48
(5 th cycle)	3	118	85	101	323	27	46
Regenerated	1	116	101	92	23	25	48
MOC-1	2	129	102	94	21	25	49
(5 th cycle)	3	119	99	92	24	25	48

	times	R	G	B	S	Η	B 1
	1	138	90	80	10	42	54
control	2	146	94	77	14	47	57
	3	140	92	77	14	45	54
	1	150	88	81	7	40	53
2.66 ppm							

	2	155	91	83	8	41	55
	3	156	87	79	8	41	52
	1	156	102	87	17	46	62
5.32 ppm	2	155	105	91	17	44	64
	3	153	103	88	17	45	62
	1	163	108	93	13	41	62
7 . 98 ppm	2	158	105	91	12	42	62
	3	165	114	95	12	38	67
	1	166	116	97	17	43	65
9.31 ppm	2	170	120	100	18	41	68
	3	168	119	98	18	44	64
	1	168	127	117	11	31	66
13.3 ppm	2	167	121	112	10	32	64
	3	165	123	115	12	34	63

Table S7 The Euclidean distance vs. $NH_{3(g)}$ concentration database

Table S8. Comparison of the sensing performances for MOC-1 sensor developed in this work

 and some other previously reported.

sensors	Detection limit	Analytical	operation	Ref
		method	temperature	
			(°C)	
TiO ₂ /SnO ₂ /WO ₃	20 ppm	resistance	200	3
PANI/rGO/SnO ₂	20 ppm	resistance	r.t.	4
MoO ₃	10 ppm	resistance	500	5
PANI-RGO	100 ppm	resistance	r.t.	6
Ni ₃ V ₂ O ₈	50 ppm	resistance	650	7
PANI-ZnO	10 ppm	resistance	r.t.	8
FJU-56	1.38 ppm	absorbance	r.t.	9
TMOF-6(Cl)	13 ppm	fluorescence	r.t.	10
$[Fe(trz-tet)_2(H_2O)_4] \cdot 2H_2O$	NA	image digitization	r.t.	11
$[Fe(H_2btm)_2(H_2O)_2]Cl_2$	0.58 ppm	image digitization	r.t.	12
MOC-1	2.8 ppm	image digitization	r.t.	This work

PANI = polyaniline, $FJU-56 = [Co(H_{0.27}L)]\cdot 4H_2O\cdot 0.5DMF$ (L = Tris-(4-tetrazolyl-phenyl)amine),

 $TMOF-6(Cl) = [Pb_{1.5}Cl_2+][-O_2C(C_6H_4)_2CO_2^-] \cdot 0.5H_2O, \text{ trz-tetH} = 5-(4H-1,2,4-\text{triazol-yl})-2H-\text{tetrazole}, H_2\text{btm} = \text{di}(1H-\text{tetrazol-5-yl})\text{methane}$

12 h	R	G	B	S	Н	B 1
1	158	105	97	7	38	61
2	165	112	104	7	36	64
3	152	99	90	8	40	59
average	158.33	105.33	97.00	7.33	38.00	61.33
36 h	R	G	B	S	Н	B1
1	151	102	94	8	37	59
2	154	105	97	8	37	60
3	150	102	94	8	37	58
average	151.67	103.00	95.00	8.00	37.00	59.00
48 h	R	G	B	S	Н	B1
1	153	103	96	7	37	60
2	164	115	106	9	35	64
3	147	97	90	7	38	57
average	154.67	105.00	97.33	7.67	36.67	60.33
60 h	R	G	B	S	Н	B 1
1	158	106	98	7	37	61
2	168	114	106	7	36	65
3	159	106	98	7	38	62
average	161.67	108.67	100.67	7.00	37.00	62.67
72 h	R	G	B	S	Н	B1
1	157	114	96	7	36	63
2	152	112	94	8	39	62
3	164	110	102	8	38	64
average	157.67	112.00	97.33	7.67	37.67	63.00
84 h	R	G	B	S	Н	B1
1	134	93	89	5	33	52
2	137	96	92	5	32	53
3	132	94	88	8	33	57
average	134.33	94.33	89.67	6.00	32.67	54.00
96 h	R	G	B	S	Н	B1
1	110	83	75	13	31	43
2	114	86	78	13	31	44
3	111	83	76	11	31	43
average	111.67	84.00	76.33	12.33	31.00	43.33

 Table S9 HCA data for pork spoilage experiment.

References

1. P. Danielsson, Comput. Graphics Image Process., 1980, 14, 227-248.

2. T. Nakamoto, M. Yosihioka, Y. Tanaka, K. Kobayashi, T. Moriizumi, S. Ueyama and W.S. Yerazunis, *Sens. Actua. B, 2006, 116*, 202–206.

3. S. M. Patil, S. A. Vanalakar, A. G. Dhodamani, S. P. Deshmukh, V. L. Patil, P. S. Patil and S. D. Delekar, *J. Mater. Sci. Mater. Electron.* 2018, **29**, 11830-11839.

4. K. K. Saravanan, P. Siva Karthik, P. Ramnivas Mirtha, J. Balaji and B. Rajeshkanna. J. Mater. Sci. Mater. Electron. 2020, **31**, 8825-8836.

5. T. Kida, K. Kawasaki, K. Kazushi, and M. Nagano., *Sens. Actua. B, chem.* 2006, **119**, 562-569.

6. S. Tohidi, M. Parhizkar, H. Bidadi and R. Mohamad-Rezaei, *Nanotechnology*, 2020, **31**, 415501.

7. F. Liu, R. Sun, Y. Guan, X. Cheng, H. Zhang, Y. Guan, X. Liang, P. Sun and G. Lu, Sens. Actua. B, chem. 2015, **210**, 795-802.

8. M. Das and D. Sarkar, Ceram. Int. 2017, 43, 11123-11131.

9. J. Zhang, J. Ouyang, Y. Ye, Z. Li, Q. Lin, T. Chen, Z. Zhang and S. Xiang, *ACS Appl. Mater. Interfaces*, 2018, **10**, 27465-27471.

10. X. Chen, Y. Yu, C. Yang, J. Yin, X. Song, J. Li and H. Fei, ACS Appl. Mater. Interfaces 2021, 13, 52765–52774

11. Y. Guo, S. Xue, M. M. Dîrtu and Y. Garcia, J. Mater. Chem. C, 2018, 6, 3895-3900.

12. L. Sun, A. Rotaru, K. Robeyns and Y. Garcia, Ind. Eng. Chem., 2021, 60, 8788-8798.