Supporting Information

Exploring Novel Ligands with Strong Electron Delocalization for Highperformance Blue CsPbBr₃ Perovskite Nanoplatelets

Zhuoqi Wen, Zhongjie Cui, Haiyang He, Dan Yang, Shiliang Mei^{*}, Bobo Yang, Zhiyong Xiong, Shanliang Song, Rui Bao, Wanlu Zhang, Guichuan Xing, Fengxian Xie^{*} and Ruiqian Guo^{*}

Experimental Section

Chemicals: Caesium carbonate (Cs₂CO₃, Aladdin, 99.99%), lead(II) bromide (PbBr₂, Macklin, 99.99%), oleic acid (OA, Aladdin, AR), oleylamine (OAm, Aladdin, C18:80-90%), 2-butynoic acid (BtA, Macklin, 98%), butyric acid (BA, Macklin, 99%), crotonic acid (CA, Macklin, \geq 99.9%), phenylpropiolic acid (PA, Aladdin, \geq 98.0%), 2-pentynoic acid (PtA, Aladdin, 97%), 1-octadecene (ODE, Aladdin, \geq 90.0%), toluene (Tol, Sinopharm, \geq 99.5%), acetone (Sinopharm, 99.5%), n-octane (Sinopharm, 98%) and methyl acetate (Macklin, 98%) were purchased without further purification.

Preparation of precursors: Cs-precursor was prepared by dissolving 0.4 mmol Cs₂CO₃ in 20 mL OA at 100 °C under continuous stirring. Pb-precursor was prepared by dissolving 0.3 mmol PbBr₂ in 10 mL Tol with 300 μ L of OAm and OA at 100 °C. Different solution for post-treatment were prepared by mixing 1 mL OAm with 1 mL OA (OA/OAm), 3.15 mmol BtA (BtA/OAm), 3.15 mmol BA (BA/OAm), 3.15 mmol CA (CA/OAm), 3.15 mmol PA (PA/OAm) and 3.15 mmol PtA (PtA/OAm) into 10 mL Tol.

Preparation of perovskite NPLs (n=3): The perovskite NPLs were synthesized according to reported procedures with some modifications.¹ In a typical experiment, 450 μ L Cs-precursor was injected into 3 mL Pb-precursor at room temperature with vigorous stirring. After 1 min, 5 mL acetone was added for initiating the formation of NPLs. Then, the turbid solution was centrifuged at 9000 rpm for 2 min and the obtained precipitate was redispersed in 2 mL Tol.

The post-treatment of NPLs: 400 μ L of solution for post-treatment were dropped into the NPLs solution under vigorous stirring and further incubated in ambient atmosphere for 2 h. When investigating the influence of the concentration of ligands on NPLs, the precipitate was redispersed in 20 mL Tol and 10-80 μ L of solution for post-treatment were added into 1 mL sample, respectively.

Characterizations: Absorption spectra were obtained through 759S Ultraviolet-visible spectrophotometer (Lengguang). PL spectra were recorded on F97XP spectrometer (Lengguang) with the excitation wavelength of 355 nm. Absolute PLQY values were measured using an integrating sphere within FluoroMax+ spectrometer (HORIBA) with the excitation wavelength of 355 nm. Transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and selected area electron diffraction (SAED) images were obtained on JEM-2100F microscope (JEOL). Fourier transform infrared spectroscopy (FTIR) were obtained by Nicolet iS10 FTIR spectrophotometer (ThermoFisher). ¹H-nuclear magnetic resonance (¹H-NMR) spectra were recorded on

AVANCE III HD 500MHz NMR spectrometer (Bruker). Time-resolved photoluminescence (TRPL) spectra were recorded on FS4 fluorescence spectrophotometer (Edinburgh). X-Ray Photoelectron Spectroscopy (XPS) were obtained on Axis Ultra DLD (Kratos). The XRD pattern was obtained using an X-ray diffractometer (Rigaku SmartLab 9kW) based on the NPLs films.

Stability test of NPLs: The solution of NPLs-OA/OAm, NPLs-BtA/OAm, NPLs-PA/OAm and NPLs-PtA/OAm were incubated at 80 °C or exposed to 365 nm UV light with the power density of 4 W cm⁻² with vigorous stirring and their PL spectra were recorded.

DFT calculations: First-principles calculations were carried out using DFT with generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) implemented in the Vienna Ab-Initio Simulation Package (VASP).^{2,3} The valence electronic states were expanded on the basis of plane waves with the core-valence interaction represented using the projector augmented plane wave (PAW) approach and a cutoff of 520 eV.⁴ A Γ -centered k-mesh of 2 × 2 × 1 was used for the surface calculations. Convergence is achieved when the forces acting on ions become smaller than 0.02 eV Å⁻¹.

Figure S1. (a) Absorption spectra of NPLs-Blank, NPLs-OA/OAm and NPLs-BtA/OAm. Urbach energy diagrams of NPLs-Blank (b), PLs-OA/OAm (c) and NPLs-BtA/OAm (d).

Figure S2. Normalized absorbance and PL spectra of NPLs-OA/OAm (a) and NPLs-BtA/OAm (d) with different ligand additions. The influence of ligand additions on emission peak and FWHM of NPLs-OA/OAm (b) and NPLs-BtA/OAm (e). The enhancement of ligand additions on PLQY of NPLs-OA/OAm (c) and NPLs-BtA/OAm (f).

Figure S3. FTIR spectra of BtA and OA.

Figure S4. High-resolution XPS analyses of Cs 3d spectra (a) and O 1s spectra of original and post-treated NPLs.

Figure S5. High-resolution XPS analyses of Pb 4f spectra (a), N 1s spectra (b) Br 3d spectra (c) and O 1s spectra (d) of NPLs-BA/OAm and NPLs-CA/OAm.

Figure S6. Deformation charge density of NPLs treated with OA (a) and BtA (b).

Figure S7. (a) PLQY measurement of NPLs-PA/OAm. (b) PLQY measurement of NPLs-PtA/OAm.

Figure S8. PL spectra of NPLs-OA/OAm (a), NPLs-BtA/OAm (b), NPLs-PA/OAm (c) and NPLs-PtA/OAm (d) under 80 °C for different times. The insets show photographs of NPLs before and after heating under ambient and UV light respectively.

Figure S9. (a) PL spectra of original and post-treated NCs. The inset shows the photographs of NCs-Blank (1, 2), NCs-OA/OAm (3, 4) and NCs-BtA/OAm (5, 6) under ambient and UV light. (b) The enhancement of different ligands on PLQY of NCs.

Table S1. PL decay parameters of NPLs in Figure 1c.

Sample	PLQY (%)	$\tau_1(ns)$	A_1	$\tau_2(ns)$	A_2	$\tau_{ave}(ns)$	$k_r (ns^{-1})$	$k_{nr} (ns^{-1})$
NPLs- Blank	12±2	4.1	0.5	8.5	0.5	6.3	0.02	0.139
NPLs- OA/OAm	35±5	5.2	0.63	11.4	0.37	7.5	0.047	0.087
NPLs- BtA/OAm	87±5	6.1	0.53	15.5	0.47	10.5	0.083	0.012

Notes: $\tau_{ave} = \sum A_i \tau_i$; $k_r = PLQY/\tau_{ave}$; $k_{nr} = (1 - PLQY)/\tau_{ave}$.

Table S2. Normalized element content of different NPLs measured by XPS.

Sample	Cs	Pb	Br	Ν
NPLs-Blank	0.75	1	2.83	0.87
NPLs-OA/OAm	0.63	1	2.94	1.13
NPLs-BtA/OAm	0.78	1	2.88	1.63
NPLs-BA/OAm	0.87	1	2.85	0.68
NPLs-CA/OAm	0.82	1	2.86	0.93

Table S3. Optical characteristics of blue-emitting CsPbBr₃ NPLs published to date.

Sample	PL (nm)	PLQY (%)	Stability	Ref.
1	460	14 (film)	No	5
2	450	40 (film)	30 min (heating at 50 °C)	6
3	460	~70	No	7
4	462	96	No	8
5	457	85	No	9
6	460	98	1.5 year (stored in air)	10
7	466	100	120 h (395 nm, 60 mW cm ⁻²)	11
8	450	87	30 min (heating at 70 °C) 30 min (325 nm, 7 W cm ⁻²)	12
9	460	60	No	13
10	462	10	No	14
11	460	98	120 min (400 nm, 110 mW cm ⁻²)	15
12	465	70	68 h (stored in air)	16
13	464	98	100 min (heating at 80 °C) 70 min (365 nm, 4 W cm ⁻²)	This work

REFERENCE

- S. Peng, Q. Wei, B. Wang, Z. Zhang, H. Yang, G. Pang, K. Wang, G. Xing, X.
 W. Sun and Z. Tang, *Angew. Chemie Int. Ed.*, 2020, **59**, 22156–22162.
- 2 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.
- 3 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169–11186.
- 4 P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953–17979.
- R. L. Z. Hoye, M. L. Lai, M. Anaya, Y. Tong, K. Gałkowski, T. Doherty, W. Li, T. N. Huq, S. Mackowski, L. Polavarapu, J. Feldmann, J. L. Macmanus-Driscoll, R. H. Friend, A. S. Urban and S. D. Stranks, *ACS Energy Lett.*, 2019, 4, 1181–1188.
- 6 J. Shamsi, D. Kubicki, D. Kubicki, M. Anaya, Y. Liu, K. Ji, K. Frohna, C. P. Grey, R. H. Friend, S. D. Stranks and S. D. Stranks, *ACS Energy Lett.*, 2020, 5, 1900–1907.
- H. Wang, F. Ye, J. Sun, Z. Wang, C. Zhang, J. Qian, X. Zhang, W. C. H. Choy,
 X. W. Sun, K. Wang and W. Zhao, *ACS Energy Lett.*, 2022, 7, 1137–1145.
- 8 Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng and H. Zeng, ACS Energy Lett., 2018, 3, 2030–2037.
- W. Yin, M. Li, W. Dong, Z. Luo, Y. Li, J. Qian, J. Zhang, W. Zhang, Y. Zhang,
 S. V. Kershaw, X. Zhang, W. Zheng and A. L. Rogach, *ACS Energy Lett.*, 2021, 477–484.
- 10 S. Su, J. Tao, C. Sun, D. Xu, H. Zhang, T. Wei, Z. H. Zhang, Z. Wang, C. Fan and W. Bi, *Chem. Eng. J.*, DOI:10.1016/j.cej.2021.129612.
- H. Huang, W. Zhao, H. Yang, X. Zhang, J. Su, K. Hu, Z. Nie, Y. Li and J. Zhong, J. Mater. Chem. C, 2021, 9, 5535–5543.
- 12 H. Lin, Q. Wei, K. W. Ng, J. Dong, J. Li, W. Liu, S. Yan, S. Chen, G. Xing, X. Tang, Z. Tang and S. Wang, *Small*, 2021, **17**, 2101359.
- 13 B. J. Bohn, Y. Tong, M. Gramlich, M. L. Lai, M. Döblinger, K. Wang, R. L. Z. Hoye, P. Müller-Buschbaum, S. D. Stranks, A. S. Urban, L. Polavarapu and J. Feldmann, *Nano Lett.*, 2018, 18, 5231–5238.
- 14 Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang and A. P. Alivisatos, J. Am. Chem. Soc., 2015, 137, 16008–16011.
- 15 Q. Zeng, Y. Du, J. Jiang, Q. Yu and Y. Li, *J. Phys. Chem. Lett.*, 2021, **12**, 2668–2675.
- 16 C. Zhang, Q. Wan, B. Wang, W. Zheng, M. Liu, Q. Zhang, L. Kong and L. Li, J. Phys. Chem. C, 2019, 123, 26161–26169.