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Experimental Section

Chemicals: Caesium carbonate (Cs2CO3, Aladdin, 99.99%), lead(II) bromide (PbBr2, 

Macklin, 99.99%), oleic acid (OA, Aladdin, AR), oleylamine (OAm, Aladdin, C18:80-

90%), 2-butynoic acid (BtA, Macklin, 98%), butyric acid (BA, Macklin, 99%), crotonic 

acid (CA, Macklin, ≥99.9%), phenylpropiolic acid (PA, Aladdin, ≥98.0%), 2-pentynoic 

acid (PtA, Aladdin, 97%), 1-octadecene (ODE, Aladdin, >90.0%), toluene (Tol, 

Sinopharm, ≥99.5%), acetone (Sinopharm, 99.5%), n-octane (Sinopharm, 98%) and 

methyl acetate (Macklin, 98%) were purchased without further purification.

Preparation of precursors: Cs-precursor was prepared by dissolving 0.4 mmol Cs2CO3 

in 20 mL OA at 100 °C under continuous stirring. Pb-precursor was prepared by 

dissolving 0.3 mmol PbBr2 in 10 mL Tol with 300 µL of OAm and OA at 100 °C. 

Different solution for post-treatment were prepared by mixing 1 mL OAm with 1 mL 

OA (OA/OAm), 3.15 mmol BtA (BtA/OAm), 3.15 mmol BA (BA/OAm), 3.15 mmol 
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CA (CA/OAm), 3.15 mmol PA (PA/OAm) and 3.15 mmol PtA (PtA/OAm) into 10 mL 

Tol.

Preparation of perovskite NPLs (n=3): The perovskite NPLs were synthesized 

according to reported procedures with some modifications.1 In a typical experiment, 

450 μL Cs-precursor was injected into 3 mL Pb-precursor at room temperature with 

vigorous stirring. After 1 min, 5 mL acetone was added for initiating the formation of 

NPLs. Then, the turbid solution was centrifuged at 9000 rpm for 2 min and the obtained 

precipitate was redispersed in 2 mL Tol.

The post-treatment of NPLs: 400 μL of solution for post-treatment were dropped into 

the NPLs solution under vigorous stirring and further incubated in ambient atmosphere 

for 2 h. When investigating the influence of the concentration of ligands on NPLs, the 

precipitate was redispersed in 20 mL Tol and 10-80 μL of solution for post-treatment 

were added into 1 mL sample, respectively.

Characterizations: Absorption spectra were obtained through 759S Ultraviolet-visible 

spectrophotometer (Lengguang). PL spectra were recorded on F97XP spectrometer 

(Lengguang) with the excitation wavelength of 355 nm. Absolute PLQY values were 

measured using an integrating sphere within FluoroMax+ spectrometer (HORIBA) 

with the excitation wavelength of 355 nm. Transmission electron microscopy (TEM), 

high-resolution TEM (HRTEM) and selected area electron diffraction (SAED) images 

were obtained on JEM-2100F microscope (JEOL). Fourier transform infrared 

spectroscopy (FTIR) were obtained by Nicolet iS10 FTIR spectrophotometer 

(ThermoFisher). 1H-nuclear magnetic resonance (1H-NMR) spectra were recorded on 



AVANCE III HD 500MHz NMR spectrometer (Bruker). Time-resolved 

photoluminescence (TRPL) spectra were recorded on FS4 fluorescence 

spectrophotometer (Edinburgh). X-Ray Photoelectron Spectroscopy (XPS) were 

obtained on Axis Ultra DLD (Kratos). The XRD pattern was obtained using an X-ray 

diffractometer (Rigaku SmartLab 9kW) based on the NPLs films. 

Stability test of NPLs: The solution of NPLs-OA/OAm, NPLs-BtA/OAm, NPLs-

PA/OAm and NPLs-PtA/OAm were incubated at 80 ℃ or exposed to 365 nm UV light 

with the power density of 4 W cm-2 with vigorous stirring and their PL spectra were 

recorded.

DFT calculations: First-principles calculations were carried out using DFT with 

generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) 

implemented in the Vienna Ab-Initio Simulation Package (VASP).2,3 The valence 

electronic states were expanded on the basis of plane waves with the core-valence 

interaction represented using the projector augmented plane wave (PAW) approach and 

a cutoff of 520 eV.4 A Γ-centered k-mesh of 2 × 2 × 1 was used for the surface 

calculations. Convergence is achieved when the forces acting on ions become smaller 

than 0.02 eV Å-1.



Figure S1. (a) Absorption spectra of NPLs-Blank, NPLs-OA/OAm and NPLs-BtA/OAm. Urbach 
energy diagrams of NPLs-Blank (b), PLs-OA/OAm (c) and NPLs-BtA/OAm (d).

Figure S2. Normalized absorbance and PL spectra of NPLs-OA/OAm (a) and NPLs-BtA/OAm (d) 
with different ligand additions. The influence of ligand additions on emission peak and FWHM of 
NPLs-OA/OAm (b) and NPLs-BtA/OAm (e). The enhancement of ligand additions on PLQY of 
NPLs-OA/OAm (c) and NPLs-BtA/OAm (f).



Figure S3. FTIR spectra of BtA and OA.

Figure S4. High-resolution XPS analyses of Cs 3d spectra (a) and O 1s spectra of original and post-
treated NPLs.



Figure S5. High-resolution XPS analyses of Pb 4f spectra (a), N 1s spectra (b) Br 3d spectra (c) and 
O 1s spectra (d) of NPLs-BA/OAm and NPLs-CA/OAm.

Figure S6. Deformation charge density of NPLs treated with OA (a) and BtA (b).

Figure S7. (a) PLQY measurement of NPLs-PA/OAm. (b) PLQY measurement of NPLs-PtA/OAm.



Figure S8. PL spectra of NPLs-OA/OAm (a), NPLs-BtA/OAm (b), NPLs-PA/OAm (c) and NPLs-
PtA/OAm (d) under 80 °C for different times. The insets show photographs of NPLs before and 
after heating under ambient and UV light respectively.

Figure S9. (a) PL spectra of original and post-treated NCs. The inset shows the photographs of NCs-
Blank (1, 2), NCs-OA/OAm (3, 4) and NCs-BtA/OAm (5, 6) under ambient and UV light. (b) The 
enhancement of different ligands on PLQY of NCs. 

Table S1. PL decay parameters of NPLs in Figure 1c.



Sample PLQY (%) τ1 (ns) A1 τ2 (ns) A2 τave(ns) kr (ns-1) knr (ns-1)

NPLs-
Blank

12±2 4.1 0.5 8.5 0.5 6.3 0.02 0.139

NPLs-
OA/OAm

35±5 5.2 0.63 11.4 0.37 7.5 0.047 0.087

NPLs-
BtA/OAm

87±5 6.1 0.53 15.5 0.47 10.5 0.083 0.012

Notes: τave = ∑Aiτi; kr = PLQY/τave; knr = (1 – PLQY)/ τave.

Table S2. Normalized element content of different NPLs measured by XPS.

Sample Cs Pb Br N

NPLs-Blank 0.75 1 2.83 0.87

NPLs-OA/OAm 0.63 1 2.94 1.13

NPLs-BtA/OAm 0.78 1 2.88 1.63

NPLs-BA/OAm 0.87 1 2.85 0.68

NPLs-CA/OAm 0.82 1 2.86 0.93

Table S3. Optical characteristics of blue-emitting CsPbBr3 NPLs published to date.

Sample PL
(nm)

PLQY
(%) Stability Ref.

1 460 14 (film) No 5

2 450 40 (film) 30 min (heating at 50 °C) 6

3 460 ~70 No 7

4 462 96 No 8

5 457 85 No 9

6 460 98 1.5 year (stored in air) 10

7 466 100 120 h (395 nm, 60 mW cm-2) 11

8 450 87
30 min (heating at 70 °C)

30 min (325 nm, 7 W cm-2)
12

9 460 60 No 13

10 462 10 No 14

11 460 98 120 min (400 nm, 110 mW cm-2) 15

12 465 70 68 h (stored in air) 16

13 464 98
100 min (heating at 80 °C)
70 min (365 nm, 4 W cm-2)
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