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Polarization quality measurements 
 

To verify the polarization quality of the beam, an analyzing polarizer was inserted into the experimental setup 

between the Pockels cell and the sample, and the beam power was measured behind the analyzer. It was then rotated 

from 0° to 360° in steps of 15° and the respective powers were measured for each angle. A fit using the Jones calculus 

was plotted. The elliptical polarized light can be described as a Jones vector, as shown in the following:  
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where	𝑬""⃑  is the electric field vector of the incident beam; 𝑬𝒙 is the 𝑥 component and 𝑬𝒚 is the 𝑦 component of 

the electric field for light propagating in the z-axis.  To obtain the intensity, and thus the power (for a known area), 

the Jones vector in a general elliptical polarization is multiplied by the Jones matrix representing a linear polarizer. 

Afterwards, the product is multiplied with its complex transpose in order to give the following normalized equation: 

 

𝑃(𝛼) = 𝑎#𝑐𝑜𝑠#𝛼 + (1 − 𝑎#)𝑠𝑖𝑛#𝛼 + 𝑎<1 − 𝑎#𝑠𝑖𝑛2𝛼	𝑐𝑜𝑠𝜑 S2) 

where 𝒂 describes the contribution of the two orthogonal linear polarizations of the beam (varies from 0 ≤

𝒂 ≤ 1); 𝜶 is the angle induced by the polarizer; and 𝝋 is the phase relationship between the two orthogonal linear 

polarizations.  The results can be seen in Figure S1 with the fit parameters 𝒂 = 𝟎. 𝟕𝟎𝟖	 ± 	𝟎. 𝟎𝟐𝟐% and  𝝋 =

𝟏. 𝟓𝟕𝟒	 ± 	𝟎. 𝟎𝟏𝟔% . For circularly polarized light, one would expect the transmitted power to be independent of the 

polarizer angle. This behavior is shown in the substantially constant behavior for RCP light. This generally shows 

good circularity of the beam with a standard deviation of <0.3%.  

Figure S1: The normalized power of the fundamental incident beam in RCP polarization was recorded at angles 
from 0° to 360, in steps of 15°. A fit using the Jones calculus was plotted. 
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Sample preparation procedure 

Previous works have already discussed the sample preparation.1-2 Thin films of enantiopure R-/S-BINOL and 

racemic BINOL are prepared and evaluated. SHG transmissive fused-silica quartz substrates (Alfa Aeser) with a 

thickness between 150 and 250 µm are cleaned with spectroscopic acetone and wiped with lens cleaning tissues 

(ThorLabs). Then, the substrate and the BINOL of our choice is inserted into a vacuum chamber (<1 ⋅ 10() mbar), 

in which the BINOL is evaporated and adsorbed on to the substrate under high vacuum at room temperature. The 

evaporation is performed in quartz crucibles with a custom-made molecular beam evaporator. Once a thin film is 

produced, the vacuum chamber is brought back to atmospheric pressure, from which the thin film is removed and 

transferred to the laser setup for measurements. All chemicals mentioned are of 99% reagent grade and are purchased 

from SIGMA-Aldrich. The thickness of the thin film is monitored with a quartz crystal microbalance (QCM; SL-

A1E40 from INFICON) and with the use of the Sauerbrey equation,3 while assuming that all BINOL molecules 

occupy equal volumes of 357.8 Å2 for an optically active crystal.4 20 minutes after the evaporation has finished, the 

sample was exvacuated and stored and room temperature. 

SHG-intensity for varying fundamental beam sizes and power 

In Figure S2a, the total absolute SHG intensity (number of counts) of RCP light (orange) and LCP light (green) 

is plotted against the area of the beam area (mm2) for pure R-BINOL of 500 nm thickness. The RCP and LCP intensity 

for each area point is inserted into Equation 1 from the main manuscript in order to obtain the brown line for the R-

BINOL in Figure 3a from the main manuscript.  Due to in-plane anisotropy, the ratio between RCP and LCP 

significantly changes with the beam area size for small beam areas. Normally for a constant 𝜒(#), the two intensity 

Figure S2: (a) Absolute SHG intensity of RCP (orange) and LCP (green) against the sample area in mm2 for R-
BINOL. For small beam areas, the ratio between of 𝐼,-.  and 𝐼/-.  is completely different (even inverted) when 
compared to the large area case and the curves even intersect. For larger areas, the anisotropic effects average out 
so the difference between the two polarizations changes. (b) average SHG-intensity changes quadratically with 
the fundamental power. 
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curves should just scale by a constant factor and their difference should also scale similarly. The fact that they 

intersect suggests that there is a change in 𝜒(#) as the beam area grows more out-of-focus. The intersection is a rough 

indicator of this change in regime from anisotropic to quasi-isotropic with increasing beam area, as discussed in the 

“SHG anisotropy for various beam areas” section from the main manuscript. Fig. S2b shows the quadratic 

dependence of the SHG-intensity when the fundamental intensity is varied. Throughout this measurement, the 

illuminated sample region remained unchanged, only varying the average power of the fundamental power of the 

input beam. We refer to our recent study for more information.1 

Development of in-plane anisotropy over time 

Figure S3 shows reflective light microscopy images of enantiopure BINOL for different degrees of 

crystallization in the film. Herein, the crystallization state in the sample was measured with different sample ages: 

30 minutes, 1 day and 9 days after evaporation. The figure illustrates the development of crystallite domains as a 

function of the sample age. Shortly after evaporation, there is no crystallization in the sample (S3a). The crystal 

domains emanate from the nucleation center, increasing the in-plane anisotropy in the sample over time (S3b). The 

morphological activity concludes after 9 days (S3c). All measurement data presented in this manuscript was recorded 

on fully crystallized samples.  

Sample region scanning with different beam sizes 

We support the argument of experimental averaging with histogram data (Fig. S4) recorded on crystallized R-

BINOL with different beam sizes in the exact same sample region (180x180µm). Experimentally, this was achieved 

by scanning a small pinhole placed on the film, so that the same sample region was mapped out on a 12x12 grid for 

a beam diameter of 15µm (6x6 and 3x3 respectively) for front and back illumination. Note that the whole sample 

region is smaller than the beam size used in the ‘large area’-measurements presented in the main manuscript. With 

increasing beam size, the degree of in-plane anisotropy within the beam-area decreases and the measurement 

Figure S3: Reflection light microscopy images of enantiopure BINOL (a) 30 minutes after evaporation. No 
crystallization is visible. (b) 1 day after evaporation: crystallization has started. The outlines of one of the domains 
is colored and the radial growth direction is indicated with arrows. The sample is partially covered with crystallite 
domains. (c) 9 days after evaporation. The sample is fully covered with crystallite domains. The outlines of the 
full domains are colored. 
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precision increases. Most importantly, the distribution average appears to be unaffected when changing the beam 

diameter. 

 

Theoretical considerations 

The nonlinear polarization and magnetization can be written as:  

𝑃$(#)(2𝜔) = 𝜀0TU𝜒$12333𝐸1(𝜔)𝐸2(𝜔) + 2𝜒$12334𝐸1(𝜔)𝐵2(𝜔)W
1,2

 S3) 

𝑀$
(#)(2𝜔) = 𝜀0T𝜒$12433𝐸1(𝜔)𝐸2(𝜔)

1,2

 S4) 

 

As electric quadrupole and magnetic dipole components cannot be experimentally distinguished from each other, 

they are both usually contained in the non-local susceptibility elements χ678
99: and χ678

:99. Furthermore, the s- and p- 

components of the second harmonic generated electric field can be written as:  

 

𝐸;,<(2𝜔) = 𝑓;,<𝐸<#(𝜔) + 𝑔;,<𝐸;#(𝜔) + ℎ;,<𝐸;(𝜔)𝐸<(𝜔) S5) 

  

	

Figure S4: SHG-CD Histograms measured on enantiopure R-BINOL in front illumination configuration 
with different beam sizes (a) 15µm beam diameter. (b) 30µm, (c) 60µm. 
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where 𝑓;,< , 𝑔;,<  and ℎ;,<  are the field components for the transmitted second harmonic generation. In their most 

general form, these field components comprise of chiral and achiral nonlinear susceptibility tensor components and 

their origin can be electric or magnetic. For circularly polarized incident beam, 𝐸<(𝜔) = ±𝑖𝐸;(𝜔) .  Most 

importantly, by exercising Neumann’s principle for cylindrical symmetry 𝐶=, the non-vanishing chiral susceptibility 

tensor components in the electric dipole approximation are: 𝜒!">
(#) = 𝜒!>"

(#) = −𝜒">!
(#) = −𝜒"!>

(#) , and the non-vanishing 

achiral components are: 𝜒>>>
(#) , 𝜒>!!

(#) = 𝜒>""
(#) , 	𝜒!!>

(#) = 𝜒!>!
(#) = 𝜒"">

(#) = 𝜒">"
(#) . Note that the magnetic contributions and 

electric contributions beyond the second order for BINOL are negligible as shown by Hicks and Fischer.5-6 

With Equation S5, the second harmonic intensity can be written as: 

 

𝐼;,<(2𝜔) = a−𝑓;,< + 𝑔;,< ± 𝑖ℎ;,<a
#|𝐸;(𝜔)|? S6) 

  

Inserting Equation S6 into Equation 1 from the main manuscript, the numerator of the SHG-CD 

value can be written as Equation 2 from the main manuscript, or alternatively as: 

 

 

 

𝑆𝐻𝐺 − 𝐶𝐷;,<(2𝜔) ∝ 𝐼𝑚iℎ;,<j ∙ 𝑅𝑒i𝑓;,< − 𝑔;,<j − 𝑅𝑒iℎ;,<j ∙ 𝐼𝑚i𝑓;,< − 𝑔;,<j S7) 
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