Unravelling the Excited State Dynamics of Monofunctionalized Mono- and Di-styryl BODIPY and Perylenediimide Dyads

Kavita Rani ${ }^{\dagger}$, Sakshi Chawla ${ }^{\dagger}$, Vinita Kumari, Arijit K. De* and Sanchita Sengupta*

Department of Chemical Sciences,
Indian Institute of Science Education and Research (IISER) Mohali,

Knowledge City, Sector 81, P. O. Manauli, Punjab 140306, India
*Email: akde@iisermohali.ac.in, sanchita@iisermohali.ac.in
${ }^{\dagger}$ contributed equally

Table of content

1. Materials and methods S2
2. Synthesis S4
3. NMR Spectra S13
4. Photophysical study S24
5. Electrochemical studies and free energy calculations S31
6. Computational studies S33
7. Transient absorption studies S34
8. Comparison table with literature examples S36
9. Coordinates of geometry optimized structures S39
10. References S49

1. Materials and Methods

All chemicals and solvents were purchased from commercial suppliers and used without further purification. Dichloromethane (DCM) was dried over calcium hydride and distilled prior to use. Tetrahydrofuran (THF) was dried over sodium/benzophenone and distilled prior to use. Silica gel of mesh size 60-120 was used for column chromatography.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Biospin Avance III FT-NMR 400 MHz and AvanceNeo (Bruker) 500 MHz spectrometer at room temperature. Tetramethyl silane was used as an internal standard.

The high-resolution mass spectra were recorded with Waters QTOF mass spectrometer. Software used for acquiring mass spectra was Flex Control, Bruker (USA) and software used for analyzing mass spectra was Flex Analysis 3.1.

UV/Vis and near infrared (NIR) spectral measurements were carried out with Carey 5000 UV/Vis spectrophotometer using a quartz cuvette with 1 cm path length. Steady-state emission and excitation studies were carried out with Hitachi F7000 fluorescence spectrophotometer equipped with R928F photomultiplier expandable up to 900 nm .

The electrochemical measurements were recorded using CHI-610 electrochemical workstation from CH Instruments (USA), with a conventional three-electrode single-compartment cell consisting of glassy carbon as the working electrode, $\mathrm{Ag} / \mathrm{AgCl}$ containing 1 M KCl solution as the reference electrode, and Pt wire as the counter electrode. Cyclic voltammetry measurements were performed at a scan rate of $100 \mathrm{mV} / \mathrm{s}$. Tetrabutylammonium hexafluorophosphate (TBAHFP) (Alfa Aesar) (0.1 M) dissolved in pre-dried DCM was used as a supporting electrolyte. The solutions were purged with nitrogen prior to measurement. The electrochemical potential was internally calibrated against the standard ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$redox couple prior to each measurement.

Time-resolved fluorescence spectra were measured using time-correlated single photon counting (TCSPC) model from Fluorocube, Horiba Jobin Yvon, NJ equipped with picosecond laser diodes as an excitation source. The 510 nm and 590 nm lasers were used as a light sources for the excitation of samples and the instrument response function (IRF) was collected using Ludox (colloidal silica) solution. The width (FWHM) of IRF was $\sim 250 \mathrm{ps}$ and the optical pulse durations from < 70 ps were used. Highly integrated picosecond PMT modules as well as microchannel plate PMTs were used for the time resolution.

Spectroelectrochemical measurements were performed using a cell assembly (SEC-C) supplied by BAS Inc (Japan) and the assembly comprised of a Pt counter electrode, a Pt gauze working electrode, and an $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode in a 1.0 mm path length quartz cell. The absorption spectra were measured using an ocean optics set up connected in absorbance mode and using the FLAME spectrometer. Voltages were swept in the range of -2 V to +2 V , dry DCM was used as solvent and TBAHFP was used as the supporting electrolyte. The solutions were purged with nitrogen for 10 min prior to Spectro electrochemical measurements. Quantum chemical density functional theory (DFT) calculations were performed on the triads $\mathbf{1}$ and $\mathbf{2}$ in the ground state using Gaussian 09 program suite. ${ }^{\text {S1 }}$ The side chains in all molecules were replaced with methyl groups in order to account for the electron-donating effect of the alkyl chain and at the same time reducing the computational time and cost. The studied molecules were optimized using global hybrid B3LYP functional and 6-31G (d, p) basis set in the gas phase together with frequency calculations. The frontier molecular orbital (FMO) energy levels and FMO distribution were obtained from geometry optimization of the neutral ground state geometries.

Femtosecond transient absorption spectroscopy

A customized broadband femtosecond transient absorption spectrometer (TAS, Newport Corp.) was used to investigate the excited state charge transfer dynamics, the details of which may be found elsewhere. ${ }^{52, S 3}$ Briefly, the light source is output from a commercial Ti: sapphire laser (Libra, Coherent Inc.) with a central wavelength of 800 nm , the repetition rate of 1 kHz , and pulse duration of 50 fs . The incident pulse is split into pump and probe pulses. One part of the pulse was guided into a commercial non-collinear optical parametric amplifier (NOPA, Topas White, Light conversion), which was used to tune the wavelength of the pump pulse to electronically excite the sample, the other part of the output from the amplifier is focused onto a CaF_{2} crystal to generate a broadband white-light probe pulse. The transient absorption data are collected at the pump magic angle $\left(54.7^{\circ}\right)$ with respect to the vertically polarized probe to negate the anisotropic effects of the sample. The spectrally-dispersed differential signal ($\Delta \mathrm{OD}$) is generated by using a mechanical chopper to block every alternate pump pulse. The data is analyzed using open-source global analysis software (Glotaran, version 1.5.1) to obtain evolution-associated spectra (EAS) assuming a three-state kinetic model. The absorbance of the sample used for the TA measurements was about 0.3 at the excitation wavelength. The absorbance was recorded after the experiment to rule out any effect of photobleaching in the sample.

2. Synthesis

(a) Synthesis Procedures for Perylenediimide (PDI) compounds

Scheme S1. Synthesis of PDI subchromophores.
The detailed experimental procedures and NMR structural characterization for PDI compounds are reported elsewhere. ${ }^{\text {S4 }}$
(b) Synthesis Procedures for Styryl-BODIPY (STBDP) compounds

Synthesis of compound 1

3,4-dihydroxybenzaldehyde ($3 \mathrm{~g}, 21.72 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(12 \mathrm{~g}, 86.88 \mathrm{mmol})$ were dissolved in dry dimethylformamide DMF (40 mL) under nitrogen atmosphere and 2-ethylhexylbromide ($12.58 \mathrm{~g}, 65.16 \mathrm{mmol}$) was added. The reaction mixture was refluxed overnight. Subsequently, the reaction mixture was extracted with ethyl acetate, washed with brine solution and water. The organic layer was dried over sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed under reduced pressure. The crude product was purified by column chromatography hexane/ethyl acetate (90/10). Compound $\mathbf{1}$ was obtained as a yellow oil.

Yield: $6.05 \mathrm{~g}(77 \%)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8 \mathrm{~Hz}, 1$ H), 3.94-3.89 (m, 4 H), 1.81-1.73 (m, 2 H), 1.56-1.40 (m, 8H), 1.33-1.29 (m, 8 H), 0.94 0.87 (m, 12 H).

Synthesis of compound 2

3,4-dihydroxybenzaldehyde ($3 \mathrm{~g}, 21.72 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(12 \mathrm{~g}, 86.88 \mathrm{mmol})$ were dissolved in dry dimethylformamide (DMF) (40 mL) under nitrogen atmosphere and 1-bromohexane (10.75 $\mathrm{g}, 65.16 \mathrm{mmol}$) was added. The reaction mixture was refluxed overnight. Then reaction mixture was extracted with ethyl acetate, washed with brine solution and water. The organic layer was dried over sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was removed under reduced pressure. The crude product was purified by column chromatography hexane / ethyl acetate (90 / 10). The compound 2 was obtained as a white solid.

Yield: $5.53 \mathrm{~g}(83 \%)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8 \mathrm{~Hz}, 1$ H), 4.10-4.03 (m, 4 H), 1.89-1.80 (m, 4 H), 1.52-1.44 (m, 4 H), 1.37-1.33 (m, 8 H), 0.91 (t, $J=8 \mathrm{~Hz}, 12 \mathrm{H}$).

Synthesis of compound 3

2,4-dimethylpyrrole ($1.15 \mathrm{~g}, 12.14 \mathrm{mmol}$) and compound $\mathbf{1}(2 \mathrm{~g}, 5.52 \mathrm{mmol})$ were dissolved in 50 mL of dry dichloromethane (DCM) and $60 \mu \mathrm{~L}$ TFA was added to this mixture and stirred for 2 h at room temperature (RT). Tetrachloro-1,4-benzoquinone (chloranil) ($1.48 \mathrm{~g}, 6.01$ mmol) was added and the reaction mixture was stirred for half an hour. From the crude reaction mixture, DCM was removed under reduced pressure and obtained the intermediate compound which was further dissolved in 50 mL of dry toluene. Subsequently, triethylamine (1.67 g , 16.49 mmol) was added, the reaction mixture was stirred for 15 minutes at RT . Then $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ $(3.90 \mathrm{~g}, 27.47 \mathrm{mmol})$ was added and reaction was stirred at $80^{\circ} \mathrm{C}$ for 30 min and cooled to RT. After that reaction was quenched with 50 mL of water and stirred for 3 h . The mixture was extracted with $\mathrm{DCM}(3 \times 60 \mathrm{~mL})$ and combined organic layers were washed with brine solution and water ($3 \times 100 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed under reduced pressure. The crude product was purified by column chromatography with hexane / DCM (80/20) as an eluent to obtain the compound $\mathbf{3}$ as a red solid. ${ }^{\text {S5 }}$

Yield: $1.28 \mathrm{~g}(40 \%)$.
${ }^{1}{ }^{1}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 6.96(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.75(\mathrm{~m}, 2 \mathrm{H}), 5.98(\mathrm{~s}, 2$ H), 3.91 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.82-3.80(\mathrm{~m}, 2 \mathrm{H})$, $2.55(\mathrm{~s}, 6 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.30$ (m, 22 H), 0.98-0.89 (m, 12 H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 155.11,150.20,150.02,143.13,141.96,131.73,126.92$, $121.00,120.30,113.70,113.22,71.92,71.66,39.62,39.53,30.63,30.54,29.20,29.10,23.93$, $23.85,23.02,14.39,14.07,14.04,11.23,11.14$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 581.4084$; Found: 581.4106.

Synthesis of compound 4

Compound $\mathbf{3}$ ($1.03 \mathrm{~g}, 1.77 \mathrm{mmol}$) was dissolved under a nitrogen atmosphere in dry DCM (30 mL) and a solution of N -iodosuccinimide (NIS) $(0.40 \mathrm{~g}, 1.77 \mathrm{mmol})$ in dry DMF (5 mL) was added. The solution was stirred at RT for 24 h . Then reaction mixture was washed with saturated solution of $\mathrm{NaCl}(2 \times 100 \mathrm{~mL})$ and ice cold water to remove the DMF. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed under reduced pressure. The crude product was purified using column chromatography hexane / DCM (70 / 30) and compound 4 was obtained as red solid. ${ }^{\text {S6 }}$

Yield: 950 mg (76 \%).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 6.97(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 1$ H), $3.92(2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.77(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.74$ (m, 2 H), $1.59-1.44(\mathrm{~m}, 14 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 8 \mathrm{H}), 0.98-0.88(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 157.66,154.40,150.51,150.38,145.42,143.45,141.97$, 132.33, 131.41, 126.88, 122.22, 120.36, 113.99, 113.23, 84.20, 72.20, 71.98, 39.75, 39.67, 30.76, 30.66, 29.33, 29.24, 24.08, 23.99, 23.17, 23.16, 16.86, 15.87, 14.87, 14.83, 14.23, 14.20, 11.38, 11.29.

HRMS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{BF}_{2} \mathrm{IN}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 707.3051; Found: 707.3096.

Synthesis of compound 5

Compound 4 ($548 \mathrm{mg}, 0.776 \mathrm{mmol}$) and compound 2 ($261 \mathrm{mg}, 0.776 \mathrm{mmol}$) were dissolved in dry benzene $(30 \mathrm{~mL})$ and acetic acid $(0.2 \mathrm{~mL})$ and piperidine $(0.2 \mathrm{~mL})$ were added. The reaction mixture was stirred at $105^{\circ} \mathrm{C}$ for 24 h and the Dean-Stark trap was used to remove the water generated by condensation. Then the reaction mixture was extracted with DCM several times and washed with water. The organic layer was dried over sodium sulphate and the solvent was removed under reduced pressure. The crude mixture was purified by column
chromatography using hexane / DCM ($60 / 40$) and compound $\mathbf{5}$ was obtained as a blue viscous liquid. ${ }^{57}$

Yield: $183 \mathrm{mg}(24 \%)$.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.50(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ - 7.13 (m, 2 H), 6.97 (d, J = $8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.86 (d, J = $8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.78-6.76 (m, 2 H), 6.64 (s, 1 H), 4.09-4.01 (m, 4 H), 3.93 (d, J=8 Hz, 2 H), 3.85-3.80 (m, 2 H), 2.67 (s, 3 H), 1.89-1.79 (m, 6 H), 1.61-1.44 (m, 20 H), 1.37-1.31 (m, 14 H$), 0.99-0.90(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 155.24,153.22,150.96,150.37,150.26,149.36,144.63$, 142.18, 139.83, 138.38, 133.77, 131.54, 129.39, 127.08, 122.17, 120.65, 118.46, 116.71, $113.84,113.43,113.22,112.45,83.99,72.15,71.92,69.57,69.21,39.73,39.64,31.76,31.71$, $30.75,30.65,29.40,29.33,29.27,29.24,28.86,25.81,24.06,23.97,23.18,23.17,22.76,22.74$, $16.80,15.95,15.11,14.25,14.22,14.18,14.16,11.39,11.30$.

HRMS (ESI): m/z calcd for $\mathrm{C}_{54} \mathrm{H}_{79} \mathrm{BF}_{2} \mathrm{IN}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 995.5140; Found: 995.5196.

Synthesis of compound 6

Compound 5 ($300 \mathrm{mg}, 0.302 \mathrm{mmol}$) was dissolved in diisopropylamine (20 mL), after purging the solution with nitrogen, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10.6 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{CuI}(2.3 \mathrm{mg}, 0.02 \mathrm{mmol})$ were added under nitrogen atmosphere, subsequently ethynyltrimethylsilane (TMSA) (0.09 $\mathrm{mL}, 0.60 \mathrm{mmol}$) was added and reaction mixture was refluxed for 2 h . Then solvent was removed under reduced pressure and the crude product was purified by silica column chromatography using hexane/ethyl acetate (95 / 5) and $\mathbf{6}$ was obtained as a green solid. ${ }^{\text {S6 }}$

Yield: 133 mg (46%).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.50(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ - 7.13 (m, 2 H), $6.97(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1$ H), 4.09-4.01 (m, 4 H), $3.93(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 1.88$ - 1.76 (m, 6 H), 1.61-1.46 (m, 20 H), $1.35-1.31$ (m, 14 H), $0.99-0.88$ (m, 18 H), $0.22(\mathrm{~s}, 9$ H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 155.82,155.15,150.92,150.35,150.21,149.37,144.21$, 142.48 , 140.52, 138.16, 134.36, 132.35, 130.68, 129.44, 126.96, 122.12, 120.61, 118.29, $116.75,114.87,113.85,113.43,113.24,112.46,100.80,98.12,72.14,71.94,69.59,69.23$,
$39.74,39.65,31.77,31.72,30.76,30.68,30.62,29.84,29.41,29.34,29.28,29.25,25.87,25.82$, 24.07, 23.99, 23.19, 23.18, 22.77, 22.75, 15.06, 14.26, 14.22, 14.19, 14.17, 13.64, 13.37, 11.39, 11.30.

HRMS (ESI): m/z calcd for $\mathrm{C}_{59} \mathrm{H}_{88} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 965.6569; Found: 965.6489.

Synthesis of compound 7

Compound $6(100 \mathrm{mg}, 0.10 \mathrm{mmol})$ was dissolved in dry DCM $(15 \mathrm{~mL})$ and dry methanol (5 mL), potassium carbonate ($43.0 \mathrm{mg}, 0.31 \mathrm{mmol}$) was added and mixture was stirred for 12 h at RT. Subsequently, the reaction mixture was extracted with DCM, washed with water and dried over sodium sulphate and solvent was removed under reduced pressure. The crude product was purified by column chromatography using hexane/ethyl acetate ($95 / 5$), however, due to unstability of compound $\mathbf{7}$ on silica column, it could not be purified completely. After one column purification, it was obtained as bluish viscous liquid and used for the next reaction without further purification. ${ }^{\text {S8 }}$

Yield: $26 \mathrm{mg}(28 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.51(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ - 7.13 (m, 2 H), 6.99-6.96 (m, 1 H), 6.86 (d, J = $8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ - 6.76 (m, 2 H), 6.64 (s, 1 H), 4.09-4.01 (m, 4 H), 3.93 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.84-3.82 (m, 2 H), 3.30 (s, 1 H), 2.67 (s, 3 H), 1.89-1.74 (m, 6H), 1.62-1.46(m, 20 H$), 1.37-1.32(\mathrm{~m}, 14 \mathrm{H}), 0.99-0.88(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 155.51,150.99,150.36,150.25,149.39,144.49,142.60$, $140.62,138.45,134.49,129.40,126.88$, 122.19, 120.62, 116.73, 113.86, 113.44, 113.25, $112.48,83.30,72.17,71.95,69.59,69.24,39.74,39.66,32.07,31.77,31.73,30.77,30.67$, $30.44,29.51,29.42,29.34,29.28,29.25,25.87,25.82,24.08,23.99,23.19,22.84,22.75,15.09$, 14.25, 14.21, 14.17, 13.23, 11.40, 11.29.

HRMS (ESI): m/z calcd for $\mathrm{C}_{56} \mathrm{H}_{80} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}:$893.6174; Found: 893.6212.

Synthesis of compound 8

Compound 4 ($500 \mathrm{mg}, 0.71 \mathrm{mmol}$) and compound 2 ($952.20,2.83 \mathrm{mmol}$) were dissolved in dry benzene $(30 \mathrm{~mL})$ and acetic acid $(0.2 \mathrm{~mL})$ and piperidine $(0.2 \mathrm{~mL})$ were added. The reaction mixture was stirred at $105^{\circ} \mathrm{C}$ for 24 h and the Dean-Stark trap was used to remove the water generated by condensation. The reaction mixture was extracted with DCM, washed with water.

The organic layer was dried over sodium sulphate and the solvent was removed under reduced pressure. The crude mixture was purified by column chromatography with hexane / DCM (50 /50) and compound $\mathbf{8}$ was obtained as a green colour viscous liquid. ${ }^{S 7}$

Yield: $667 \mathrm{mg}(73 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.98(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ 7.19 (m, 3 H), 7.16 ($\mathrm{s}, 1 \mathrm{H}), 7.11$ ($\mathrm{s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (t, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.80$ - 6.78 (m, 2 H), 6.67 ($\mathrm{s}, 1 \mathrm{H}$), $4.11-4.03$ (m, 8 H), 3.93 (d, $J=4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.83 ($\mathrm{s}, 2 \mathrm{H}$), 1.89 $1.78(\mathrm{~m}, 10 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 26 \mathrm{H}), 1.35-1.31(\mathrm{~m}, 20 \mathrm{H}), 0.99-0.89(\mathrm{~m}, 24 \mathrm{H})$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 155.31,151.01,150.37,149.35,149.30,148.03$, 144.24, 142.98, 138.57, 138.39, 137.55, 134.46, 132.64, 130.41, 129.50, 127.29, 121.97, $121.19,120.96,118.88,117.36,116.93,113.87,113.76,113.70,113.34,113.11,113.02,81.29$, $72.16,71.91,69.61,69.58,69.32,69.19,39.74,39.66,31.76,31.74,31.71,31.69,30.74,30.65$, $29.46,29.43,29.33,29.31,29.28,29.22,25.87,25.84,25.80,25.79,24.05,23.97,23.14,23.13$, $22.72,22.70,17.23,15.06,14.20,14.16,14.12,14.11,11.36,11.27$.

HRMS (ESI): m / z calcd for $\mathrm{C}_{73} \mathrm{H}_{107} \mathrm{BF}_{2} \mathrm{IN}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1283.7229$; Found: 1283.7251.

Synthesis of compound 9

Compound $\mathbf{8}$ ($311 \mathrm{mg}, 0.24 \mathrm{mmol}$) was dissolved in diisopropylamine (20 mL), after purging the solution with nitrogen, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(8.50 \mathrm{mg})$ and $\mathrm{CuI}(2.31 \mathrm{mg})$ were added under nitrogen atmosphere, subsequently, TMSA ($47.76 \mathrm{mg}, 0.49 \mathrm{mmol}$) was added and the reaction mixture was refluxed for 2 h . Then the solvent was removed under reduced pressure and crude was purified by column chromatography with hexane/ethyl acetate (90/10) and $\mathbf{9}$ was obtained as a green solid. ${ }^{\text {S6 }}$

Yield: $173 \mathrm{mg}(57 \%)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.33(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ 7.19 (m, 3 H), 7.13 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-$ 6.78 (m, 2 H), 6.66 ($\mathrm{s}, 1 \mathrm{H}$), $4.10-4.03$ (m, 8 H), 3.93 (d, $J=4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.83 (d, $J=4 \mathrm{~Hz}, 2$ H), 1.89-1.81 (m, 10 H$), 1.61-1.51(\mathrm{~m}, 26 \mathrm{H}), 1.41-1.37(\mathrm{~m}, 20 \mathrm{H}), 1.00-0.92(\mathrm{~m}, 24 \mathrm{H})$, 0.28 (s, 9 H).
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 154.74,151.00,150.95,150.42,150.40,150.27,149.38$, $149.30,144.31,143.55,143.53,138.82,137.98$, 137.97, 137.78, 134.83, 131.88, 130.61, $129.69,127.24,121.92,120.97,120.93,118.50,117.14,117.11,113.93,113.82,113.74$, 113.48, 113.37, 113.20, 112.57, 102.98, 100.09, 72.21, 72.03, 69.73, 69.58, 69.37, 69.30, $39.78,39.70,31.79,31.75,30.79,30.69,29.48,29.47,29.36,29.33,29.26,25.89,25.88,25.84$, 24.10, 24.02, 23.20, 23.19, 22.76, 15.03, 14.25, 14.21, 14.17, 13.16, 11.40, 11.31.

HRMS (APCI): m / z calcd for $\mathrm{C}_{78} \mathrm{H}_{116} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 1253.8658 ; Found: 1253.8652 .

Synthesis of compound 10

Compound 9 ($100 \mathrm{mg}, 0.08 \mathrm{mmol}$) was dissolved in DCM (15 mL) and methanol (5 mL), potassium carbonate ($33.07 \mathrm{mg}, 0.24 \mathrm{mmol}$) was added and mixture was stirred at RT for 12 h under nitrogen atmosphere. After that reaction mixture was extracted with DCM and washed with water. The crude product was purified by column chromatography by using hexane/ ethyl acetate $(90 / 10)$ as eluent. The compound 9 was obtained as a green solid. ${ }^{\text {S8 }}$

Yield: 57 mg (61 \%).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.21(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=16 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ (t, $J=8 \mathrm{~Hz}, 3 \mathrm{H}$), 7.13 (s, 2 H), $6.98(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81-6.79(\mathrm{~m}$, 2 H), 6.66 ($\mathrm{s}, 1 \mathrm{H}$), $4.10-4.02(\mathrm{~m}, 8 \mathrm{H}), 3.94(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.84$ (s, 2 H), 3.54 (s, 1 H), 1.89-1.82 (m, 10 H$), 1.62-1.50(\mathrm{~m}, 26 \mathrm{H}), 1.36-1.31(\mathrm{~m}, 20 \mathrm{H}), 0.99-0.91(\mathrm{~m}, 24 \mathrm{H})$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 155.04,150.98,150.80,150.53,150.34,150.26$, 149.33, 149.30, 144.48, 143.79, 138.87, 138.27, 137.51, 134.91, 131.66, 130.54, 129.58, $127.09,121.97,121.42,120.93,118.64,117.12,117.00,113.89,113.77,113.61,113.40$, $113.35,113.16,111.30,85.50,78.69,72.18,71.96,69.71,69.68,69.30,69.23,39.76,39.67$, $31.78,31.77,31.72,31.71,30.76,30.67,29.81,29.50,29.46,29.34,29.33,29.30,29.23,25.88$, $25.87,25.82,25.81,24.07,23.99,23.16,23.15,22.73,15.01,14.21,14.17,14.13,13.00,11.37$, 11.27.

HRMS (ESI): m / z calcd for $\mathrm{C}_{75} \mathrm{H}_{108} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1181.8263$; Found: 1181.8289 .

(c) Synthesis procedure for dyads 1 and 2

Synthesis of dyad 1

The compound 9 ($35 \mathrm{mg}, 0.039 \mathrm{mmol}$) and PDI $1(28 \mathrm{mg}, 0.039 \mathrm{mmol})$ were dissolved in tetrahydrofuran (THF) (25 mL) and the reaction mixture was purged with nitrogen, subsequently sodium ascorbate ($7.3 \mathrm{mg}, 0.037 \mathrm{mmol}$) and copper sulphate ($4.7 \mathrm{mg}, 0.019$ mmol) dissolved in water were added to this mixture. Then reaction mixture was stirred for 3 days at $50{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After 3 days, THF was evaporated under reduced pressure and reaction mixture was extracted with DCM, the organic layer was dried over sodium sulphate and solvent was removed under reduced pressure. The crude product was purified by column chromatography DCM/EA (9/1) as eluent and a pink solid compound was obtained.

Yield: $30 \mathrm{mg}(47 \%)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.67(\mathrm{~s}, 2 \mathrm{H}), 8.55(\mathrm{~s}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=16$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.80(\mathrm{~m}$, $3 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.87-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.70(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.01$ $(\mathrm{m}, 4 \mathrm{H}), 3.93(\mathrm{t}, J=4 \mathrm{~Hz}, 2 \mathrm{~Hz}), 3.82(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{t}, J=8 \mathrm{~Hz}), 1.88$ $-1.73(\mathrm{~m}, 6 \mathrm{H}), 1.60-1.40(\mathrm{~m}, 16 \mathrm{H}), 1.42-1.31(\mathrm{~m}, 18 \mathrm{H}), 0.98-0.85(\mathrm{~m}, 24 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 162.72,162.18,150.74,150.38,150.18,149.31$, $146.47,143.69,141.38,141.32,140.72,139.18,137.45,135.69,135.37,133.93,133.88$, 133.27, 133.24, 133.12, 131.60, 131.51, 131.45, 131.42, 130.44, 129.51, 129.16, 128.54, $127.23,126.18,125.31,123.52,123.43,123.40$, 123.10, 122.51, 121.82, 120.69, 118.09, $115.06,113.89,113.34,113.28,112.54,72.16,71.94,69.59,69.22,47.76,47.03,44.73,44.68$, $39.75,39.66,38.11,31.76,31.72,30.81,30.77,30.67,29.42,29.33,29.29,29.24,28.78,28.76$, $25.86,25.81,24.08,23.99,23.18,22.76,22.74,15.04,14.25,14.21,14.17,13.61,12.96,11.40$, 11.32, 10.73, 10.71 .

HRMS (ESI): m / z calcd for $\mathrm{C}_{90} \mathrm{H}_{105} \mathrm{BCl}_{4} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{8}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 1600.6834; Found: 1600.6750.

Synthesis of dyad 2

The compound 11 ($55 \mathrm{mg}, 0.0465 \mathrm{mmol}$) and PDI $2(43.8 \mathrm{mg}, 0.0465 \mathrm{mmol})$ were dissolved in THF (25 mL) and the mixture was purged with nitrogen, subsequently, sodium ascorbate $(8.7 \mathrm{mg}, 0.0437 \mathrm{mmol})$ and copper sulphate $(5.6 \mathrm{mg}, 0.0223 \mathrm{mmol})$ dissolved in water were
added to this mixture. Then reaction mixture was stirred for 3 days at $50^{\circ} \mathrm{C}$ temperature. After 3 days, THF was evaporated under reduced pressure and reaction mixture was extracted with DCM, the organic layer was dried over sodium sulphate and solvent was removed under reduced pressure. The crude product was purified by column chromatography DCM/EA (4/1) as eluent and a dark green solid compound was obtained.

Yield: $43 \mathrm{mg}(44 \%)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}): 8.10(\mathrm{~s}, 2 \mathrm{H}), 8.04(\mathrm{~s}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.46$ (d, $J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 5 \mathrm{H}), 7.15-7.11$ (m, 3 H), 7.08 (t, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 6 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 6 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.82-6.76(\mathrm{~m}, 2 \mathrm{H})$, 6.70-6.68(m, 2 H), 4.74 (t, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.62-4.57 (m, 2 H), 4.07-3.98 (m, 6 H), 3.92 3.88 (m, 6 H), 3.85-3.80 (m, 2 H), 2.04 (s, 1 H), 1.85-1.80 (m, 54 H), 1.75-1.67 (m, 6 H), 1.57-1.47 (m, 16 H), 1.37-1.25 (m, 38 H), 0.97-0.82 (m, 30 H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}): 163.40,163.03,156.04,155.72,155.45,150.87$, $150.32,150.17,149.31,149.12,143.39,141.15,141.01,139.36,137.31,133.03,132.81$, 132.57, 130.18, 129.94, 129.49, 127.2, 124.58, 124.01, 123.01, 121.92, 121.41, 121.08, 120.82, 120.66, 120.16, 120.11, 119.88, 119.74, 119.57, 118.08, 113.75, 113.31, 113.18, 112.90, 112.54, 71.72, 71.70, 69.51, 69.24, 69.12, 69.01, 50.06, 47.89, 40.01, 39.75, 39.63, 37.98, $31.71,31.67,31.65,30.74,30.68,30.59,29.44,29.39,29.29,29.23,29.15,29.12,28.74,25.82$, $25.76,25.74,24.03,23.99,23.91,23.12,23.11,23.06,22.69,22.65,14.63,13.94,13.90,13.86$, 13.84, 12.42, 11.10, 11.01, 10.42.

HRMS (ESI): m / z calcd for $\mathrm{C}_{133} \mathrm{H}_{153} \mathrm{BF}_{2} \mathrm{~N}_{7} \mathrm{O}_{14}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}:$2121.1531; Found: 2121.1577.

3. NMR spectra

${ }^{1} \mathrm{H}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR spectra of compound $1 \mathrm{CDCl}_{3}$.

${ }^{1} \mathrm{H}$ NMR spectra of compound $2 \mathrm{CDCl}_{3}$.

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3}$ in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3}$ in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{4}$ in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectra of compound 4 in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectra of compound 5 in CDCl_{3}.

| 1 | |
| :--- |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5}$ in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{6}$ in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectra of compound 6 in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectra of compound 7 in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectra of compound 7 in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{8}$ in CDCl_{3}.

	1	18	170				13				1	1	70	60	5	10	1				
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ f 1 \end{gathered}$		80	70	60	50	40	30	20	10	0	-10

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{8}$ in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{9}$ in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectra of compound 9 in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectra of compound 10 in CDCl_{3}.

: 00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
. 00	190	180	170	160	150	140	130	120	110	f1 (ppm)		8	\%	60	5		30	2	10	

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 0}$ in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectra of dyad $\mathbf{1}$ in CDCl_{3}.

${ }^{13} \mathrm{C}$ NMR spectra of dyad $\mathbf{1}$ in CDCl_{3}.

${ }^{1} \mathrm{H}$ NMR spectra of dyad $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

${ }^{13} \mathrm{C}$ NMR spectra of dyad $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

4. Photophysical study

4.1. Steady-state fluorescence experiment

Figure S1. Normalized fluorescence spectra of (a) PDI $1\left(\lambda_{\mathrm{ex}}=520 \mathrm{~nm}\right)$, MSBDP $6\left(\lambda_{\mathrm{ex}}=597 \mathrm{~nm}\right)$, dyad $1\left(\lambda_{\mathrm{ex}}=\right.$ $524 \mathrm{~nm})$ and (b) PDI $2\left(\lambda_{\mathrm{ex}}=580 \mathrm{~nm}\right)$, DSBDP $9\left(\lambda_{\mathrm{ex}}=663 \mathrm{~nm}\right)$ and dyad $2\left(\lambda_{\mathrm{ex}}=588 \mathrm{~nm}\right)$ in chloroform $\left(\mathrm{CHCl}_{3}\right)$ (c $\left.\sim 2 \times 10^{-6} \mathrm{M}\right)$.

Figure S2. Overlap of UV/Vis absorption and fluorescence spectra of (a) MSBDP 6 and PDI 1 and (b) DSBDP 9 and PDI 2 in $\mathrm{CHCl}_{3}\left(c \sim 10^{-6} \mathrm{M}\right)$.

Figure S3. Fluorescence spectra of (a) PDI 1, 6 and dyad 1 and (b) PDI 2, 9 and dyad $\mathbf{2}$ in toluene ($c \sim 2 \times 10^{-6}$ $\mathrm{M})$.

Figure S4. Fluorescence spectra of (a) PDI 1, 6 and dyad $\mathbf{1}$ and (b) PDI 2, 9 and dyad $\mathbf{2}$ in acetonitrile (ACN) (c $\sim 2 \times 10^{-6} \mathrm{M}$).

4.2. Solvatochromism study

Figure S5. Solvatochromism study of PDI 1 and PDI $2\left(c \sim 2 \times 10^{-6} \mathrm{M}\right)$. Tol (Toluene), CF (Chloroform), THF (Tetrahydrofuran), ACN (Acetonitrile) (Inset show images of compounds under UV light; $\lambda_{\mathrm{ex}}=365 \mathrm{~nm}$).

Figure S6. Solvatochromism study of MSBDP 6 and DSBDP $9\left(c \sim 2 \times 10^{-6} \mathrm{M}\right)$ (Inset show images of compounds under UV light; $\lambda_{\mathrm{ex}}=365 \mathrm{~nm}$).

Figure S7. Solvatochromism study of dyads $\mathbf{1}$ and $2\left(c \sim 2 \times 10^{-6} \mathrm{M}\right)$ (Inset show images of compounds under UV light; $\left.\lambda_{\mathrm{ex}}=365 \mathrm{~nm}\right)$.

Solvatochromism investigation of dyads $\mathbf{1}$ and $\mathbf{2}$ along with reference compounds PDI 1, PDI 2, MSBDP 6 and DSBDP 9 were carried out in four different solvents i.e., toluene, CHCl_{3}, THF and ACN, the absorption and emission maxima are reported in Table S1. For reference compounds PDI 1, PDI 2, MSBDP 6 and DSBDP 9, weak negative solvatochromism was observed with increase in solvent polarity from toluene to acetonitrile (Figure S5, S6). Likewise, for dyads $\mathbf{1}$ and $\mathbf{2}$, very little changes were observed in UV/Vis absorption spectrum in different polarity solvents which indicates that regardless of whether electronic interactions are available among PDI and STBDP, they are exceptionally feeble in the ground state (Figure S7). Moreover, in the fluorescence spectra for dyad $\mathbf{1}$, similar fluorescence intensities were observed in toluene, chloroform and THF, however in acetonitrile intensity was comparatively high and for dyad 2, almost similar fluorescence intensities were observed in toluene, chloroform and THF, but in acetonitrile, fluorescence intensity was quenched compared to other solvents.

Table S1. Absorption and emission maxima of dyads $\mathbf{1}$ and $\mathbf{2}$ and corresponding reference compounds in different solvents.

Compound	Toluene		CHCl_{3}		THF		ACN	
	$\begin{aligned} & \lambda_{\mathrm{abs}} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{gathered} \lambda_{\mathrm{em}} \\ (\mathrm{~nm}) \end{gathered}$	$\lambda_{\text {abs }}(\mathrm{nm})$	$\begin{aligned} & \lambda_{\mathrm{em}} \\ & (\mathrm{~nm}) \end{aligned}$	$\lambda_{\text {abs }}(\mathrm{nm})$	$\begin{aligned} & \lambda_{\mathrm{em}} \\ & (\mathrm{~nm}) \end{aligned}$	$\lambda_{\text {abs }}(\mathrm{nm})$	$\begin{gathered} \lambda_{\mathrm{em}} \\ (\mathrm{~nm}) \end{gathered}$
PDI 1	522	551	520	550	514	543	513	543

PDI 2	570	600	580	612	564	595	563	597
MSBDP 6	601	614	597	613	594	610	590	608
DSBDP 9	668	685	663	683	659	680	654	680
Dyad 1	$\begin{aligned} & \hline 526, \\ & 593 \end{aligned}$	$\begin{gathered} \hline 552, \\ 610\left(\lambda_{\text {exc }}\right. \\ =526 \\ \mathrm{~nm}) \\ 611\left(\lambda_{\text {exc }}\right. \\ =593 \\ \mathrm{~nm}) \end{gathered}$	524, 588	$\begin{gathered} 550,607 \\ \left(\lambda_{\mathrm{exc}}=524\right. \\ \mathrm{nm}) \\ 607\left(\lambda_{\mathrm{exc}}\right. \\ =588) \end{gathered}$	$517,$	$\begin{gathered} \hline 548,607 \\ \left(\lambda_{\mathrm{exc}}\right. \\ =517 \\ \mathrm{~nm}) \\ 608\left(\lambda_{\mathrm{exc}}\right. \\ =588) \end{gathered}$	516,	$\begin{gathered} 542,607 \\ \left(\lambda_{\text {exc }}=\right. \\ 516 \mathrm{~nm}) \\ 607\left(\lambda_{\mathrm{exc}}\right. \\ =583) \end{gathered}$
Dyad 2	$\begin{aligned} & 576, \\ & 661 \end{aligned}$	$\begin{gathered} 615, \\ 673\left(\lambda_{\text {exc }}\right. \\ = \\ 576 \mathrm{~nm}) \\ 678\left(\lambda_{\text {exc }}\right. \\ =661) \end{gathered}$	588, 654	$\begin{gathered} \hline 613,673 \\ \left(\lambda_{\text {exc }}=588\right. \\ \mathrm{nm}) \\ 676\left(\lambda_{\text {exc }}\right. \\ =654) \end{gathered}$	571, 654	$\begin{gathered} \hline 606,672 \\ \left(\lambda_{\text {exc }}=571\right. \\ \mathrm{nm}) \\ \\ 678\left(\lambda_{\text {exc }}\right. \\ =654) \end{gathered}$	573,653	$\begin{gathered} \hline 603, \\ 668\left(\lambda_{\text {exc }}=\right. \\ 573 \mathrm{~nm}) \\ 678\left(\lambda_{\text {exc }}=\right. \\ 653) \end{gathered}$

4.3.Concentration dependent study in different solvents

The concentration dependent UV/Vis absorption spectra of dyads $\mathbf{1}$ and $\mathbf{2}$ as well as reference compounds were performed in three different solvents as for solvatochromism study except acetonitrile (ACN) because in ACN compounds were dissolved partially (Figure S8-S10). The concentration dependent spectra of $c \sim 10^{-4} \mathrm{M}$ samples were recorded with 1 mm path length cuvette while the other samples are recorded with 1 cm path length cuvette.

Figure S8. Concentration dependent study of study of PDI 1 and PDI 2.

Figure S9. Concentration dependent study of study of MSBDP 6 and DSBDP 9.

Figure S10. Concentration dependent study of study of dyad $\mathbf{1}$ and dyad $\mathbf{2}$.

From these experiments, we didn't observe broadening in spectral features up to $\sim 10^{-4} \mathrm{M}$ concentration which indicates that there is no formation of aggregation.

4.4. Fluorescence spectra of MSBDP and DSBDP at 530 nm

Figure S11. Fluorescence spectra of (a) MSBDP 6 and (b) DSBDP 9 in CHCl_{3} and Toluene $\left(c \sim 10^{-6} \mathrm{M}\right)\left(\lambda_{\text {exc }}=\right.$ 530 nm).

4.5.Fluorescence quantum yield

Table S2. Relative quantum yields of PDI 1, PDI 2, dyads $\mathbf{1}$ and $\mathbf{2}$ by using relative method in CHCl_{3}.

| Compo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| und |

$\left.\begin{array}{|c|l|l|l|l|l|l|l|c|l|}\hline \begin{array}{c}\text { Lumog } \\ \text { en® F } \\ \text { Red } \\ \text { 305 (in } \\ \left.\mathrm{CHCl}_{3}\right)\end{array} & 0.0315 & 0.0394 & 0.0454 & 135.19 & 160.11 & 178.19 & & 0.96 & \\ \text { (reporte } & & & & & & & \\ \text { d) })^{\text {S10 }}\end{array}\right]$

4.6.Fluorescence lifetime

Figure S12. Fluorescence lifetime decay collected using TCSPC of (a) PDI 1, dyad 1 at excitation wavelength of 510 nm in CHCl_{3} and b) PDI 2, dyad 2 at excitation wavelength of 590 nm in CHCl_{3}.

Figure S13. Fluorescence lifetime decay collected using TCSPC at different excitation wavelengths of (a) PDI 1, dyad $\mathbf{1}$ at excitation wavelength of 510 nm in ACN.

Table S3. Fluorescence lifetime analysis of PDI 1, PDI 2, dyad 1 and dyad 2 at different excitation and emission wavelengths in toluene, CHCl_{3} and ACN .

Com poun d	Solvent	$\begin{aligned} & \lambda_{\mathrm{exc}} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{gathered} \lambda_{\mathrm{em}} \\ (\mathrm{~nm}) \end{gathered}$	$\mathrm{t}_{1}\left(\alpha_{1}\right)(\mathrm{ns})$	$\tau_{2}\left(\alpha_{2}\right)(\mathrm{ns})$	$\tau_{3}\left(\alpha_{3}\right)(\mathrm{ns})$	$\tau_{\text {avg }}(\mathbf{n s})$	χ^{2}	$\begin{gathered} \text { ETE }= \\ 1- \\ \tau_{\mathrm{D}} / \tau_{\mathrm{DA}} \end{gathered}$
PDI 1	Toluene	510	551	5.25 (1.00)	-	-	5.25	1.01	
	CHCl_{3}	510	550	5.12 (1.00)	-	-	5.12	1.00	
	ACN	510	543	5.39 (1.00)	-	-	5.39	1.03	

PDI 2	Toluene	560	600	$6.41(1.00)$	-	-	6.41	1.16	
	CHCl_{3}	590	612	$6.33(1.00)$	-	-	6.33	1.03	
	ACN	560	596	$6.92(1.00)$	-	-	6.92	1.13	
Dyad	Toluene	510	552	$1.59(0.11)$	$5.11(0.31)$	$0.12(0.57)$	1.85	1.01	$\sim 65 \%$
$\mathbf{1}$	CHCl_{3}	510	550	$1.38(0.09)$	$5.03(0.26)$	$0.09(0.65)$	1.50	1.09	$\sim 70 \%$
	ACN^{2}	510	542	$1.32(0.10)$	$5.29(0.36)$	$0.09(0.55)$	2.06	1.00	$\sim 62 \%$
Dyad	Toluene $_{2}$	590	615	$0.48(0.41)$	$2.75(0.41)$	$4.54(0.17)$	2.12	1.17	$\sim 67 \%$
$\mathbf{2}$	CHCl_{3}	590	613	$2.46(0.25)$	$0.42(0.56)$	$0.09(0.55)$	1.76	1.06	$\sim 62 \%$
	ACN^{2}	590	603	-	-	-	n.d.	-	-

5. Electrochemical studies and the free energy change calculations for photoinduced electron transfer

Figure S14. Alignment of frontier molecular orbital energy levels (in eV) obtained from CV measurements for PDI 1, Dyad 1, MSBDP 6, PDI 2, Dyad 2, and DSBDP 9.

For dyad 1
Standard oxidation potential of donor in $\mathrm{DCM} ; E^{\circ}{ }_{\mathrm{D}}{ }^{+} / \mathrm{D}=+0.95 \mathrm{~V}$
Standard reduction potential of acceptor in $\mathrm{DCM} ; E^{\circ}{ }_{\mathrm{A} / \mathrm{A}^{-}}=-0.36 \mathrm{~V}$
The average radii of the donor r_{D} and the acceptor r_{A} were estimated from the Connolly molecular surfaces volume of the respective moieties calculated with MM2 using the Chem3D Pro software. ${ }^{\text {S11 }}$

Average radii of donor; $\mathrm{R}_{\mathrm{A}}=4.35 \AA$
Average radii of acceptor; $R_{A}=4.93 \AA$
Center to center distance of donor and acceptor segment, $\mathrm{R}_{\mathrm{cc}}=15.89 \AA$

For dyad 2
Standard oxidation potential of donor in $\mathrm{DCM} ;{E^{\mathrm{o}}{ }_{\mathrm{D}}{ }^{+}{ }_{\mathrm{D}}=+0.8 \mathrm{~V} . \mathrm{d}}$
Standard reduction potential of acceptor in $\mathrm{DCM} ; E^{\mathrm{o}}{ }_{\mathrm{A} / \mathrm{A}^{-}}=-0.66 \mathrm{~V}$
Average radii of donor; $=R_{D}=4.35 \AA$
Average radii of acceptor; $\mathrm{R}_{\mathrm{A}}=5.27 \AA$
Center to center distance of donor and acceptor segment, $\mathrm{R}_{\mathrm{cc}}=16.12 \AA$
Table S4. Calculated driving force for charge separation ($\Delta G_{C S}$), and charge recombination ($4 G_{C R}$) process for Dyad $\mathbf{1}$ and Dyad $\mathbf{2}$ in toluene, chloroform and acetonitrile.

Compound	Solvent	$\mathbf{E}_{\mathbf{0 0}}$ $(\mathbf{e V})$	$\boldsymbol{\Delta G}_{\boldsymbol{C S}}^{\mathbf{0}} \mathbf{(\mathbf { e V })}$	$\boldsymbol{\Delta}_{\boldsymbol{C R}}^{\mathbf{0}} \mathbf{(e V)}$
	Toluene	2.065	-0.13	-1.90
	Chloroform	2.079	-0.61	-1.42
	Acetonitrile	2.089	-1.01	-1.03
Dyad 2	Toluene	1.860	-0.09	-1.91
	Chloroform	1.866	-0.28	-1.55
	Acetonitrile	1.880	-0.57	-1.25

Figure S15: Schematic diagram of the potential energy surfaces for the ground state D-A (grey), vibrationally hot D-A* state (orange: dyad $\mathbf{1}$; red: dyad 2), and charge-separated state (violet: dyad 1 ; blue: dyad 2). E_{00} is the energy corresponding to the first excited singlet state.

Excitation of electron donor moiety (MSBDP/DSBDP) in the dyad produces the vibrationally hot locally excited state (MSBDP*-PDI 1/DSBDP*-PD1 2) of the dyad. The formation of this
charge-separated state (CSS) opens up the CR channel involving back electron transfer from the charge-separated state to the ground state MSBDP-PDI 1/DSBDP-PDI 2.

6. Computational studies

The ground state geometries of dyads $\mathbf{1}$ and $\mathbf{2}$ were optimized by the density functional theory (DFT) method using B3LYP exchange-correlation functional and 6-31G(d, p) basis set (Figure S16). These DFT calculations uncovered that HOMO and HOMO-1 molecular orbitals are located completely on styryl-BODIPY for two dyads $\mathbf{1}$ and $\mathbf{2}$. But, for dyad $\mathbf{1}$, LUMO and LUMO+1 orbitals are located on the PDI unit while for dyad 2, LUMO is on the PDI unit and LUMO+1 is on the styryl-BODIPY unit. The presence of HOMO on STBDP and LUMO+1 on PDI suggests their electron rich and deficient character respectively, and the charge transfer character of these dyads $\mathbf{1}$ and $\mathbf{2}$.

Figure S16. Frontier Molecular Orbitals (FMOs) of dyads 1 and 2 as obtained by DFT method at B3LYP 6-31G (d,p) level.

Table S5. FMO energy levels calculated using B3LYP/6-31G(d,p) calculations.

Compound	HOMO-1 (eV)	HOMO $(\mathbf{e V})$	LUMO (eV)	LUMO+1 $(\mathbf{e V})$
Dyad 1	-5.56	-4.75	-3.92	-2.65
Dyad 2	-5.14	-4.44	-3.12	-2.30

Table S6. First three frequencies obtained from frequency calculations for dyads $\mathbf{1}$ and $\mathbf{2}$.

Compound	First three frequencies
Dyad 1	2.58
	3.67
	5.41
Dyad 2	1.81
	4.35
	5.36

7. Transient absorption studies

Figure S17: 2D contour maps for transient absorption spectra at varying probe for (a) PDI 1 ($\lambda_{\text {pump }}=537 \mathrm{~nm}$), (b) MSBDP $6\left(\lambda_{\text {pump }}=590 \mathrm{~nm}\right)$, (c) PDI $2\left(\lambda_{\text {pump }}=530 \mathrm{~nm}\right)$, and $(\mathrm{d}) \operatorname{DSBDP} 9\left(\lambda_{\text {pump }}=650 \mathrm{~nm}\right)$ in toluene.

Figure S18: Evolution associated difference spectra (EADS) obtained from global fitting of the data to a sequential model (left panel) together with the corresponding population kinetics (middle panel), and kinetic traces at selected wavelengths along with fits (right panel) for PDI 1 following 537 nm excitation in toluene (a to c) and in chloroform (d to f).

Figure S19: Evolution associated difference spectra (EADS) obtained from global fitting of the data to a sequential model (left panel) together with the corresponding population kinetics (middle panel), and kinetic traces at selected wavelengths along with fits (right panel) for PDI 2 following 530 nm excitation in toluene (a to c) and in chloroform (d to f).

Figure S20: Evolution associated difference spectra (EADS) obtained from global fitting of the data to a sequential model (left panel) together with the corresponding population kinetics (middle panel), and kinetic traces at selected wavelengths along with fits (right panel) for MSBDP 6 following 590 nm excitation in toluene (a to c) and in chloroform (d to f).

Figure S21: Evolution associated difference spectra (EADS) obtained from global fitting of the data to a sequential model (left panel) together with the corresponding population kinetics (middle panel), and kinetic traces at selected wavelengths along with fits (right panel) for DSBDP 9 following 650 nm excitation in toluene (a to c) and in chloroform (d to f).

Table S7. The kinetic parameters for excited-state relaxation of constituent chromophores PDI 1, PDI 2, MSBDP 6 and DSBDP 9 in toluene and chloroform obtained using global analysis of TA data.

Compound	$\boldsymbol{\lambda}_{\text {pump }}(\mathbf{n m})$	Solvent	$\boldsymbol{\tau}_{\boldsymbol{1}}(\mathbf{p s})$	$\boldsymbol{\tau}_{\mathbf{2}}(\mathbf{p s})$	$\boldsymbol{\tau}_{3}(\mathbf{p s})$
PDI 1	537	Toluene	2.1	140.4	5599
		Chloroform	3.41	235.7	6285
PDI 2	530	Toluene	--	187.4	4927
		Chloroform	--	111.5	5724
MSBDP 6	590	Toluene	1.30	209.1	3254
		Chloroform	0.60	66.6	3063
DSBDP 9	650	Toluene	0.50	264.3	3346
		Chloroform	0.17	62.5	4256

7. Comparison with other literature examples

A comparison table for all the reported cassettes and antenna based on styryl-BODIPY is provided in table S8. It is evident that the majority of the examples show a design of cassettes where the chromophores are attached through the styryl pendant or through meso-positions of the styryl-BODIPY. The present work is the only example with monofunctionalization at 8 position and connection of additional chromophores through only one 6 -position.

Table S8: Energy/electron transfer cassettes reported on styryl-BODIPY with other chromophores.

S. No.	Composition of LH systems	Energy/electron transfer	References
1.	Dyads 1 and 2 containing PDI and Mono Styryl- or Distyryl-BODIPYs: Connected through monofunctionalization at 6-position via nonconjugated spacer	Ultrafast charge transfer from mono styryl or distyryl BODIPY to PDI followed by slow charge recombination In toluene dyad 1 ($\tau_{\mathrm{CS}} \sim 157 \mathrm{ps}$ and $\left.\tau_{\mathrm{CR}} \sim 838 \mathrm{ps}\right)$ and dyad 2 ($\tau_{\mathrm{CS}} \sim 257 \mathrm{ps}$ and $\tau_{\mathrm{CR}} \sim 1032 \mathrm{ps}$) In chloroform dyad 1 ($\tau_{\mathrm{CS}} \sim 2.19 \mathrm{ps}$ and $\tau_{\mathrm{CR}} \sim 35.2 \mathrm{ps}$) and dyad 2 ($\tau_{\mathrm{CS}} \sim 14.6 \mathrm{ps}$ and $\tau_{\mathrm{CR}} \sim 127.8 \mathrm{ps}$).	This work
2.	Electron donor-acceptor dyads of phenoxazine connected at meso position of distyryl-BODIPY in conjugation	For BDP-1 charge separation (from phenoxazine to distyryl-BODIPY) and charge recombination take 109 ps and 2.3 ns and possessed the long triplet state lifetime ($\tau_{\mathrm{T}}=333 \mu \mathrm{~s}$) in toluene and in $\mathbf{A C N}\left(\tau_{\mathrm{CS}} \sim 0.79\right.$ ps and $\tau_{\mathrm{CR}} \sim 3.5 \mathrm{ps}$). In BDP-2 ($\tau_{\mathrm{CS}} \sim 1.2 \mathrm{ps}$ and $\tau_{\mathrm{CR}} \sim 1.6 \mathrm{~ns}$) CS faster than BDP-1 ($\left.\tau_{\mathrm{CS}} \sim 109 \mathrm{ps}\right)$ in toluene and in the polar solvent $\mathbf{A C N},\left(\tau_{\mathrm{CS}} \sim 0.3 \mathrm{ps}\right.$ and τ_{CR} $\sim 1.6 \mathrm{ps}$) results similar to those of BDP-1 were obtained.	$\begin{aligned} & \text { Chem Phys Chem } \\ & 2020, \mathbf{2 1}, 1388- \\ & 1401 \end{aligned}$
3.	Distyryl-BODIPY and BODIPY based triads, pentads and hexads connected through styryl arms and two 8 -positions via triazole linkers	Efficient energy transfer from BODIPY to distyryl-BODIPY (ETE ~ 98%).	$\begin{gathered} \text { Chem. Eur. J. } \\ \text { 2019, 25, } 14959 \\ -14971 \end{gathered}$
4.	Vertically positioned Distyryl-BODIPYaluminum(III) porphyrin-fullerene supramolecular triads	In supramolecular triad, $\left(\mathrm{Ph}_{2}-\mathrm{BDP}\right)$ - $\mathrm{AlPorF}_{3} \leftarrow \mathrm{Im}-\mathrm{C}_{60}$, energy transfer ($k_{\mathrm{EnT}}=1.00 \times$ $10^{10} \mathrm{~s}^{-1}$) from ${ }^{1} \mathrm{AlPorF}_{3} *$ to ${ }^{1}\left(\mathrm{Ph}_{2}-\mathrm{BDP}\right) *$ and electron transfer from ${ }^{1} \mathrm{AlPorF}_{3} *$ to $\mathrm{C}_{60}\left(k_{\mathrm{CS}}=\right.$ $3.35 \times 10^{9} \mathrm{~s}^{-1}$), followed by hole shift ($k_{\mathrm{HS}}=$ $1.00 \times 10^{9} \mathrm{~s}^{-1}$) to Ph_{2}-BDP in toluene.	Nanoscale, 2018, 10, 20723-20739
5.	Distyryl-BODIPY and squaraine based triads connected through meso position of STBDP via triazole linkers (nonconjugate spacer)	Quantitative FRET ($k=3.3 \times 10^{11} \mathrm{~s}^{-1}$) from SQ to Styryl-BDP moiety in toluene and in ACN FRET followed by PET ($k=5.9 \times 10^{10} \mathrm{~s}^{-1}$) from Styryl-BDP to SQ.	$\begin{gathered} \text { Dye. Pigment., } \\ \text { 2017, 147, } 560- \\ 572 \end{gathered}$
6.	Supramolecular conjugate comprised of distyrylBODIPY connected to electron donors triphenylamine or phenothiazine through styryl arms (conjugate spacer) and electron acceptor fullerene through meso position	Femtosecond transient absorbance studies provided evidence for the occurrence of ultrafast charge separation and relatively slow charge recombination in these donor-acceptor systems, followed by population of the ${ }^{3}$ BODIPY* as evident from nanosecond transient absorption studies in benzonitrile. $\begin{aligned} & \mathbf{2}\left(k_{\mathrm{CS}}=2.2 \times 10^{11} \mathrm{~s}^{-1}\right) ;\left(k_{\mathrm{CR}}=8.2 \times 10^{8} \mathrm{~s}^{-1}\right), \\ & \mathbf{3}\left(k_{\mathrm{CS}}=3.1 \times 10^{11} \mathrm{~s}^{-1}\right) ;\left(k_{\mathrm{CR}}=2.3 \times 10^{8} \mathrm{~s}^{-1}\right), \\ & \mathbf{4}\left(k_{\mathrm{CS}}=4.1 \times 10^{10} \mathrm{~s}^{-1}\right) ;\left(k_{\mathrm{CS}}=3.3 \times 10^{8} \mathrm{~s}^{-1}\right) \end{aligned}$	Phys.Chem.Chem .Phys., 2016, 18, 18187-18200
7.	An asymmetric triad composed of blue BODIPY, green BODIPY connected to meso position of distyryl-BODIPY	Efficient EET from the blue BODIPY to green BODIPY $\sim 99 \%$ and green BODIPY to red BODIPY ~ 91\%.	Chem. Commun., 2015, 51, 11382- 11385

8.	2,6-diiodo BODIPY dyads with mono- or distyrylBODIPY connected through meso position via triazole linkers	Ultrafast FRET was observed from iodinated BODIPY to mono- or distyryl-BODPY ($k_{\text {FRET }}=$ $\left.5.02 \times 10^{10} \mathrm{~s}^{-1}\right)$ and triplet energy transfer was efficient $\left(\Phi_{\text {TTET }}=92 \%\right)$ and fast process $\left(k_{\text {TTET }}\right.$ $=5.2 \times 10^{4} \mathrm{~s}^{-1}$).	$\begin{gathered} \hline \text { J. Phys. Chem. A, } \\ \text { 2015, 119, } \\ 6791-6806 \end{gathered}$
9.	Unsymmetrical triad of distyryl-BODIPY, diketopyrrolopyrole and triphenyl amine through phenyl-alkyne-phenyl or phenyl-alkyne-thienyl (conjugate spacer) units at meso position	Quantitative energy transfer from the DPPPh to the DSBDP moiety, as confirmed by the excitation spectrum and charge transfer process between the triphenylamine and the DPP module.	$\begin{aligned} & \text { J. Org. Chem. } \\ & \text { 2015, 80, } \\ & 6737-6753 \end{aligned}$
10.	Dyads B-1 and B-2 containing BODIPY or monostyryl-BODIPY connected through the meso position of diiodo monostyryl (B-1) or distyryl-BODIPY (B-2) via triazole linker	The intramolecular energy transfer was calculated as 66% for B1 and 46% for B2.	$\begin{gathered} \text { J. Org. Chem. } \\ 2014,79, \\ 10240-10255 \end{gathered}$
11.	Cassettes containing BODIPY and mono styryl-BODIPY connected through biphenyl linker at meso positions	Through-bond energy transfer from BODIPY to mono styryl-BODIPY (TBET efficiencies ~99 \%).	$\begin{aligned} & \hline \text { J. Org. Chem. } \\ & \text { 2014, 79, } \\ & 6315-6320 \end{aligned}$
12.	Dyads of diiodo mono styryl or diiodo distyryl- BODPY (as energy acceptor) with rhodamine (as energy donor) connected through meso position	Intramolecular singlet energy transfer (56.3\% and 53.2%) from rhodamine to iodo STBDP followed by generation of triplet excited state localized on STBDP.	J. Mater. Chem. C, 2014, 2, 3900- 3913
13.	Triads and tetrads of BODIPY, C60 meso linked to distyrylBODIPY through phenylene bridge	Intramolecular energy transfer $\sim 92 \%$ from antenna to C 60 followed by generation of triplet excited state due to ISC effect of C_{60}.	$\begin{gathered} \text { Chem. Eur. J. } \\ 2013, \mathbf{1 9}, 17472 \\ -17482 \end{gathered}$
14.	Dendritic light harvester composed of BODIPY connected through styryl arms of tetra styrylBODIPY via triazole linkers	Efficient energy transfer ($\sim 90 \%$) from BODIPY to tetra styryl-BODIPY (based on reduced emission lifetimes of the donor moieties).	Org. Lett., 2012, 14, 3636-3639
15	Tweezers containing zinc porphyrin rings connected through styryl arms of distyryl-BODIPY by triazole rings (nonconjugate linker)	Efficient EET from the ZnP to the distyrylBODIPY in toluene (BDP β-Por ${ }_{2}, k_{\mathrm{ENT}}=8.5 \times 10^{11} \mathrm{~s}^{-1}$; BDP meso-Por ${ }_{2}, k_{\mathrm{ENT}}=3.1 \times 10^{11} \mathrm{~s}^{-1}$) and in benzonitrile energy transfer from ZnP to DSBDP $\left(\right.$ BDP $\beta-$ Por $_{2}, k_{\mathrm{ENT}}=6.5 \times 10^{11} \mathrm{~s}^{-1}$; BDP meso-Por ${ }_{2}, k_{\mathrm{ENT}}=1.3 \times 10^{11} \mathrm{~s}^{-1}$) as well as additional electron transfer occurred from DSBDP to ZnP in (BDP β-Por ${ }_{2}, k_{\text {CS }}=9.2 \times 10^{9} \mathrm{~s}^{-1}$; BDP meso-Por ${ }_{2}, k_{\mathrm{CS}}=1.2 \times 10^{9} \mathrm{~s}^{-1}$).	$\begin{gathered} \text { J. Phys. Chem. A } \\ \text { 2012, 116, } \\ 3889-3898 \end{gathered}$
16.	Dyads of distyryl- BODIPY and C60 connected through meso	Energy transfer from the distyryl-BODIPY antenna to the C_{60} unit and in turn the backward	Org. Lett., 2012, 14, 2594-2597

	position or styryl arms of styryl-BODIPY	triplet state energy transfer from C_{60} to the distyryl-BODIPY antenna.	
17.	Artificial light harvesting antennae $\mathbf{1}$ and $\mathbf{2}$ based on BODIPY and distyrylBODIPY attached to carbohydrate platform through meso position	Ultrafast energy transfer take place from BODIPY to distyryl-BODIPY (1, rate constant $\sim 4 \times 10^{12} \mathrm{~s}^{-1} ; \mathbf{2}$, rate constant $\sim 8 \times 10^{10} \mathrm{~s}^{-1}$ from transient spectrum).	Chem. Commun., 2012, 48, 1055010552
18.	Zn^{2+} ion guided self assembly of distyrylBODIPY and BODIPY dyes	Based on the emission data an energy transfer efficiency of 82% was calculated from BODIPY to distyryl-BODIPY.	Org. Lett., 2012, 14, 5286-5289
19.	Through bond energy transfer cassettes based on coumarin with distyryl- BODIPY, connected through conjugated phenyl liker at meso position	On excitation of coumarin, energy transfer from coumarin to distyryl-BODIPY ($\sim 96 \%$ to 98% energy efficiencies and antenna effect ~ 3 to 5.5 fold).	J. Mater. Chem., 2011, 21, 1316813171
20.	Unimolecular solar concentrator based on BODIPY, monostyryl and distyryl BODIPY connected through styryl arms of DSBDP	Efficient energy transfer $\sim 90-97 \%$ has been found from BODIPY to monostyryl-BODIPY to distyryl-BODIPY.	Angew. Chem. Int. Ed., 2011, 50, 10907 10912
21.	Silicon(IV) phthalocyanines (Pc) substituted axially with two mono styryl-BODIPY moieties (through meso position)	Quenching of Pc-part fluorescence was due to a PET process from MSBDP to Pc. The lifetime of the charge-separated state was determined to be $1.7 \pm 0.1 \mathrm{~ns}$ in toluene.	$\begin{aligned} & \text { Chem. Commun., } \\ & 2009,1517-1519 \end{aligned}$
22.	Energy transfer cassettes of BODIPY and distyrylBODIPY, connected through meso and styryl arms	Efficient energy transfer from BODIPY to distyryl-BODIPY.	Tetrahedron Letters, 2009, 50 1738-1740
23.	Light harvesting system composed of BODIPY, monostyryl-BODIPY and distyryl-BODIPY dyes connected through meso positions via triazole linkers	Highly efficient energy transfer (99%) from BODIIPY or mono styryl-BODIPY to distyrylBODIPY.	$\begin{gathered} \text { Org. Lett., 2008, } \\ \mathbf{1 0}, 29-32 \end{gathered}$

8. Coordinates of geometry optimized structures

Coordinates of geometry optimized structure of dyad 1

C	-8.40791	-1.18164	-0.35371
N	-8.01438	0.14494	-0.17661
B	-6.54089	0.64473	-0.10757
C	-6.08494	-1.94561	-0.22514
C	-7.45897	-2.21667	-0.38325
C	-4.30839	-0.63127	0.09011

C	-3.82720	-1.96318	-0.01795
C	-4.93807	-2.79993	-0.21872
C	-9.84713	-1.20632	-0.43569
C	-10.26316	0.10494	-0.31158
C	-9.11933	0.93293	-0.14984
C	-9.04959	2.35931	0.04237
C	-10.77474	-2.37402	-0.59829
C	-3.52905	0.62610	0.30129
C	-4.88290	-4.28526	-0.41727
C	-7.92327	-3.62552	-0.56589
F	-6.21674	1.38049	-1.24116
F	-6.36614	1.42558	1.04072
C	-8.11554	-4.44922	0.55888
C	-8.55501	-5.76298	0.41703
C	-8.80751	-6.28060	-0.88116
C	-8.61171	-5.46145	-1.99032
C	-8.17498	-4.13887	-1.83422
N	-5.64790	-0.63021	-0.03371
O	-9.23097	-7.57297	-0.92405
O	-8.77187	-6.62840	1.44379
C	-2.42313	-2.35799	0.06715
C	-10.11687	3.18666	-0.07119
C	-10.13064	4.63143	0.11797
C	-11.35753	5.31987	-0.03176
C	-11.44876	6.69543	0.13468
C	-10.28410	7.43645	0.46275
C	-9.06977	6.76324	0.61015
C	-8.99138	5.38168	0.44063
O	-10.45970	8.77674	0.60775
O	-12.59157	7.42791	0.00838
C	11.29452	1.06579	-0.28163
C	9.93589	0.69212	-0.10869

C	9.59462	-0.69303	0.04069
C	10.56206	-1.62677	-0.36460
C	11.88998	-1.24780	-0.63098
C	12.27114	0.07447	-0.52644
C	11.66307	2.42753	-0.20750
C	10.70518	3.38214	0.06642
C	9.34760	3.02238	0.14093
C	8.91950	1.70416	-0.08526
C	7.53583	1.24853	-0.26786
C	7.21719	-0.05519	0.23966
C	8.25737	-0.98606	0.57122
C	5.85836	-0.42744	0.41582
C	5.54071	-1.61342	1.11571
C	6.55321	-2.38332	1.65213
C	7.89852	-2.06417	1.39685
C	6.50154	1.94212	-0.91731
C	5.16241	1.52297	-0.82939
C	4.83353	0.38920	-0.11377
C	3.41015	0.00379	0.03961
N	3.14832	-1.15181	0.79295
C	4.12690	-2.01038	1.32882
C	13.69652	0.44479	-0.73017
N	14.00667	1.81017	-0.62491
C	13.08345	2.83154	-0.36442
O	3.81109	-3.02129	1.93594
O	2.49408	0.64706	-0.45423
O	14.55393	-0.39041	-0.97477
O	13.45107	3.99341	-0.27601
C	15.40437	2.22777	-0.79619
C	1.73666	-1.50407	1.00328
C	1.17113	-2.29421	-0.18937
N	-0.25746	-2.51556	-0.04267

N	-0.71523	-3.64433	0.54605
N	-2.01254	-3.55333	0.61190
Cl	9.08237	-3.00879	2.26831
C	-1.28682	-1.68615	-0.35449
Cl	10.16799	-3.29751	-0.69238
Cl	6.80689	3.29356	-1.98247
Cl	8.25361	4.28442	0.65540
C	-9.48648	-8.14721	-2.19563
C	-13.78719	6.74168	-0.32105
C	-8.51213	-6.17626	2.76405
C	-9.32749	9.56701	0.93500
H	-11.28983	0.44361	-0.30813
H	-8.07390	2.75229	0.30154
H	-10.61334	-3.13812	0.16728
H	-10.64565	-2.86963	-1.56497
H	-11.81122	-2.03252	-0.52780
H	-2.58398	0.41185	0.80513
H	-4.10819	1.33202	0.89721
H	-3.30696	1.11477	-0.65571
H	-3.85147	-4.60705	-0.55994
H	-5.48519	-4.60016	-1.27267
H	-5.26676	-4.82328	0.45609
H	-7.91510	-4.04504	1.54362
H	-8.79640	-5.84311	-2.98717
H	-8.02787	-3.51546	-2.71032
H	-11.08000	2.75277	-0.33590
H	-12.24393	4.74848	-0.28254
H	-8.17164	7.31564	0.85859
H	-8.03013	4.89436	0.55995
H	12.62725	-1.99340	-0.90341
H	11.00694	4.41323	0.20667
H	6.30155	-3.24510	2.25872

H	4.37769	2.09693	-1.30753
H	15.99400	1.33739	-0.99754
H	15.75393	2.72464	0.11086
H	15.47844	2.93419	-1.62515
H	1.18067	-0.57453	1.12794
H	1.67485	-2.10431	1.90977
H	1.64286	-3.27637	-0.25308
H	1.34342	-1.74620	-1.11838
H	-1.13647	-0.74374	-0.85612
H	-9.80431	-9.17249	-2.00220
H	-8.58583	-8.16015	-2.82284
H	-10.28595	-7.61539	-2.72766
H	-14.56573	7.50411	-0.37234
H	-14.05586	6.00255	0.44504
H	-13.71150	6.23711	-1.29317
H	-8.74003	-7.01882	3.41796
H	-9.15105	-5.32565	3.03415
H	-7.46074	-5.89056	2.89469
H	-9.68941	10.59378	1.00189
H	-8.55329	9.50607	0.15957
H	-8.89332	9.27289	1.89906
H			
H			

Coordinates of geometry optimized structure of dyad 2

C	9.65991	2.20680	-0.19916
N	9.49220	0.84275	-0.42796
B	8.19405	0.04274	-0.10923
C	7.27126	2.46532	0.27008
C	8.56281	3.01481	0.14734
C	5.74549	0.82307	0.28969
C	5.05656	2.05128	0.55476
C	6.00529	3.07862	0.54861
C	11.05096	2.52179	-0.40148
C	11.66699	1.33528	-0.75233

C	10.69366	0.30131	-0.76319
C	10.85613	-1.09533	-1.07686
C	11.76107	3.83818	-0.28331
C	5.27932	-0.54482	0.20633
C	5.70992	4.53749	0.73329
C	8.78297	4.47230	0.39539
F	7.88264	-0.78872	-1.19591
F	8.36324	-0.71460	1.04056
C	8.96478	4.93442	1.71223
C	9.18085	6.28519	1.97406
C	9.21421	7.21038	0.89734
C	9.03132	6.74757	-0.40336
C	8.81990	5.38505	-0.65396
N	7.06198	1.09952	0.09573
O	9.42841	8.50849	1.24650
O	9.36941	6.81968	3.21077
C	3.61027	2.23503	0.70526
C	12.05785	-1.68578	-1.28738
C	12.30196	-3.08337	-1.62063
C	13.63741	-3.50644	-1.81852
C	13.94827	-4.82117	-2.13992
C	12.90368	-5.77138	-2.27441
C	11.58364	-5.36113	-2.07875
C	11.28448	-4.03796	-1.75646
O	13.29335	-7.03587	-2.59062
O	15.20733	-5.30270	-2.34586
C	-10.17152	-0.84090	-0.85742
C	-8.83873	-0.45689	-0.54062
C	-7.98968	-1.36389	0.17279
C	-8.60729	-2.45980	0.81025
C	-9.95174	-2.78906	0.55890
C	-10.70986	-2.02401	-0.30519

C	-10.94825	-0.03852	-1.72376
C	-10.40730	1.10190	-2.28241
C	-9.12220	1.53304	-1.90502
C	-8.36808	0.83494	-0.94190
C	-7.11453	1.30995	-0.35622
C	-6.17389	0.32215	0.08072
C	-6.55836	-1.05301	0.21909
C	-4.84143	0.71363	0.39350
C	-3.86032	-0.27408	0.63410
C	-4.19123	-1.61238	0.55041
C	-5.52466	-2.00500	0.33934
C	-6.78121	2.66448	-0.14557
C	-3.12737	2.51252	0.76302
N	-2.19650	1.48622	1.01949
C	-2.46266	0.11222	0.92051
C	-12.10325	-2.43638	-0.60482
N	-12.82099	-1.61239	-1.48783
C	-12.32947	-0.44065	-2.08024
O	-1.55995	-0.70505	1.07319
O	-2.78413	3.68568	0.81095
O	-12.60811	-3.43917	-0.11761
O	-13.03219	0.20266	-2.84859
C	-14.19648	-1.98631	-1.83498
C	-0.83001	1.88151	1.38539
C	0.05301	2.02638	0.13762
N	1.44683	2.23954	0.51045
N	1.76573	3.12280	1.48246
N	3.06485	3.11721	1.60608
O	-5.84094	-3.32125	0.14795
O	-7.88942	-3.13161	1.75984
C	-8.24230	-4.42181	2.14372
C	-4.98550	-4.32377	0.59922

C	-4.69260	-4.46422	1.95645
C	-3.88268	-5.52329	2.36643
C	-3.37891	-6.43293	1.43293
C	-3.69120	-6.28321	0.08102
C	-4.49608	-5.22479	-0.34362
C	-8.42726	-4.65195	3.50536
C	-8.70183	-5.94768	3.94521
C	-8.79625	-6.99716	3.03016
C	-8.60707	-6.74940	1.66861
C	-8.32282	-5.46153	1.21607
C	2.56367	1.67007	-0.00490
C	3.76016	-2.46701	0.72319
C	4.57354	-3.48440	0.20577
C	4.12601	-4.80437	0.16203
C	2.85841	-5.14676	0.63417
C	2.02139	-4.13365	1.16932
C	2.48027	-2.82187	1.21036
O	0.80473	-4.55514	1.60943
O	2.33646	-6.40509	0.63436
C	4.17319	-1.06663	0.78781
C	9.45797	9.47829	0.21230
C	9.32124	5.94643	4.32903
C	16.29216	-4.39937	-2.22042
C	12.28866	-8.02665	-2.73442
C	3.13778	-7.45629	0.12249
C	-0.07778	-3.58587	2.16115
H	12.71364	1.21614	-0.99581
H	9.94034	-1.66926	-1.15036
H	11.58440	4.31611	0.68428
H	11.43776	4.55168	-1.04717
H	12.83800	3.68539	-0.39760
H	5.94019	-1.19745	-0.35142

H	4.63395	4.70316	0.77438
H	6.14078	5.13947	-0.07060
H	6.13036	4.91645	1.67024
H	8.93321	4.21965	2.52545
H	9.05072	7.44166	-1.23487
H	8.67903	5.04307	-1.67437
H	12.95533	-1.07502	-1.20162
H	14.43161	-2.77610	-1.71428
H	10.77520	-6.07573	-2.17593
H	10.24759	-3.75741	-1.60847
H	-10.40835	-3.64992	1.03047
H	-10.98864	1.65864	-3.00700
H	-3.40980	-2.35309	0.65975
H	-14.43588	-2.90110	-1.29918
H	-14.27744	-2.13845	-2.91325
H	-14.88048	-1.18375	-1.55160
H	-0.42443	1.10785	2.03589
H	-0.88149	2.82857	1.91779
H	-0.29741	2.86547	-0.47104
H	0.01136	1.11133	-0.45647
H	-5.10233	-3.75907	2.67105
H	-3.65375	-5.64278	3.42114
H	-2.74627	-7.25237	1.75827
H	-3.30138	-6.98544	-0.64935
H	-4.74680	-5.08577	-1.38993
H	-8.35460	-3.81995	4.19780
H	-8.84804	-6.13270	5.00508
H	-9.01464	-8.00288	3.37499
H	-8.67207	-7.56316	0.95282
H	-8.15661	-5.25935	0.16383
H	2.53522	0.93675	-0.79435
H	5.57330	-3.25925	-0.14839

H	4.78070	-5.56974	-0.23717
H	1.84195	-2.04379	1.61343
H	3.52200	-0.41784	1.36694
H	9.63350	10.43559	0.70479
H	8.50520	9.52075	-0.33112
H	10.26908	9.28551	-0.50193
H	9.48462	6.57498	5.20525
H	10.10733	5.18205	4.28043
H	8.34549	5.45188	4.41479
H	17.19225	-4.98250	-2.42035
H	16.35367	-3.97580	-1.20941
H	16.22467	-3.57937	-2.94740
H	12.81304	-8.95011	-2.98375
H	11.58800	-7.77934	-3.54230
H	11.72531	-8.17079	-1.80353
H	2.53875	-8.36331	0.21692
H	4.06615	-7.57590	0.69593
H	3.38928	-7.29835	-0.93442
H	-0.98398	-4.13125	2.42925
H	-0.33098	-2.79975	1.44257
H	0.34705	-3.12414	3.06225
C	-4.50749	2.08539	0.44433
C	-5.47789	3.04298	0.22102
O	-7.75841	3.60649	-0.31765
H	-5.21479	4.08917	0.31646
O	-8.51140	2.56455	-2.56071
C	-9.22142	3.64865	-3.05089
C	-7.62753	4.85551	0.28931
C	-7.53356	7.37655	1.45183
C	-7.61955	6.23829	2.25671
C	-7.67103	4.96965	1.67968
C	-7.54393	5.98023	-0.52817

C	-7.49922	7.24425	0.06284
C	-8.77937	4.17461	-4.26543
C	-10.26880	4.24748	-2.34727
C	-10.88760	5.37599	-2.88530
C	-9.40104	5.30976	-4.78542
C	-10.45943	5.91137	-4.10161
H	-7.49509	8.36166	1.90602
H	-7.65177	6.33576	3.33759
H	-7.52414	5.85550	-1.60497
H	-7.43485	8.12597	-0.56738
H	-7.74817	4.07711	2.29174
H	-7.95910	3.68802	-4.78228
H	-9.05959	5.71866	-5.73162
H	-10.58373	3.84241	-1.39250
H	-11.70340	5.84281	-2.34170
H	-10.94564	6.79065	-4.51204

9. References

S1 Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian, Inc., Wallingford CT, 2010.
S2 Dhamija, B. Thakur, P. Guptasarma and A. K. De, Faraday Discuss., 2018, 207, 3954.

S3 Y. Silori, S. Chawla and A. K. De, ChemPhysChem, 2020, 21, 1908-1917.
S4 K. Rani, U. K. Pandey and S. Sengupta, J. Mater. Chem. C, 2021, 9, 4607-4618.
S5 A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891-4932.
S6 C. Lambert, T. Scherpf, H. Ceymann, A. Schmiedel and M. Holzapfel, J. Am. Chem. Soc., 2015, 137, 3547-3557.
S7 O. Altan Bozdemir, S. Erbas-Cakmak, O. O. Ekiz, A. Dana and E. U. Akkaya, Angew. Chem. Int. Ed., 2011, 50, 10907-10912.

S8 C. P. Sen, R. G. Shrestha, L. K. Shrestha, K. Ariga and S. Valiyaveettil, Chem. Eur. J., 2015, 21, 17344-17354.

S9 M. Fischer and J. Georges, Chem. Phys. Lett., 1996, 260, 115-118.
S10 G. Seybold and G. Wagenblast, Dye. Pigment., 1989, 11, 303-317.
S11 F. Zieschang, M. H. Schreck, A. Schmiedel, M. Holzapfel, J. H. Klein, C. Walter, B. Engels, C. Lambert, J. Phys. Chem. C., 2014, 118, 27698-27714.

