Supporting Information

Structure modulation for bandgap engineered vacancy-ordered Cs₃Bi₂Br₉ perovskite structures through copper alloying

Amr Elattar, *^{a,b} Libor Kobera,^c Jiban Kangsabanik,^d Hiroo Suzuki,^a Sabina Abbrent,^c Takeshi Nishikawa,^a Kristian S. Thygesen,^d Jiri Brus,^c and Yasuhiko Hayashi^a

Fig. S1 Scanning Electron Microscope (SEM) images of perovskite crystals with different Cu-alloying with Energy Dispersive Scanning (EDS) elemental mapping for Bi (Blue) and Cu (Red).

Fig. S2 (a) Photograph of Cs₂CuBr₄ perovskite crystals. (b) Photograph of drop-casted Cs₂CuBr₄ perovskite thin film over TiO₂/Glass substrate.

Fig. S3 Direct bandgap estimation: (a) Tauc plots of different Cu-alloyed perovskite thin films. (b) Bandgap energies of different Cu-alloyed perovskite thin films.

Fig. S4 Rietveld refinement spectra of different Cu-alloyed perovskite thin films.

Fig. S5 Experimental 133Cs MAS NMR spectra of 70% Cu-alloyed perovskite were conducted at 10 kHz and 7 kHz spinning speeds of the sample. The asterisks (*) denote spinning sidebands.

Fig. S6 Raman measurement of different Cu-alloyed perovskite crystals.

Fig. S7 Normalized Raman Eg (a), and A1g (b) bands for different alloyed $Cu-Cs_3Bi_2Br_9$ perovskites.

Fig. S8 XPS Cu $2p_{3/2}$ peak area of Cu²⁺ (Red square) and Cu⁺ (Black balls) for different alloyed Cu-Cs₃Bi₂Br₉ perovskites.

Fig. S9 XPS spectra of Cs 4d (a), Cs 3d (b), Bi 4f (c), Br 3d (d), and Cu 2p (e) for different alloyed Cu-Cs₃Bi₂Br₉ perovskites.

Fig. S10 Different perovskite crystal structures applied for calculating energy above the convex hull: (a) $Cs_3Bi_2Br_9$ (b) Cs_2CuBr_4 (c) $50\%Cu-Cs_3Bi_2Br_9$ (d) $50\%Cu-Cs_2CuBr_4$ (e) $Cu_2Cs_3Bi_2Br_9$ (b) Cs_2CuBr_4 (c) $50\%Cu-Cs_3Bi_2Br_9$ (d) $50\%Cu-Cs_3CuBr_4$ (e) $Cu_2Cs_3Bi_2Br_9$ (b) Cs_2CuBr_4 (c) $Cs_3Bi_2Br_9$ (d) $S0\%Cu-Cs_3Di_2Br_9$ (d) $S0\%Cu-Cs_3Di_2Br$