Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

SUPPORTING INFORMATION

Consequence of Optimal Bonding on Cation Ordering and Enhanced Near-

Infrared Luminescence in Cr³⁺-doped Pyroxene Oxides

Hongzhen Liu, Fangyi Zhao, Hao Cai, Zhen Song*, and Quanlin Liu*

The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials

Science & Engineering, University of Science and Technology Beijing, Beijing 100083, China.

* Corresponding Author: E-mail address: qlliu@ustb.edu.cn (Quanlin Liu)

* Corresponding Author: E-mail address: zsong@ustb.edu.cn (Zhen Song)

Fig. S1. (a)-(b) Rietveld refinement results of the synthesized $(Mg_{0.6}Li_{0.4})(Mg_{0.6}Sc_{0.4})Ge_2O_6:4\%Cr^{3+}$ and $(Mg_{0.5}Li_{0.5})(Mg_{0.5}Sc_{0.5})Ge_2O_6:4\%Cr^{3+}$, respectively.

Fig. S2. (a)–(c) SEM images of the synthesized $Mg_2Ge_2O_6:4\% Cr^{3+},4\% Li^+$, LiScGe $_2O_6:4\% Cr^{3+}$ and $(Mg_{0.6}Li_{0.4})(Mg_{0.6}Sc_{0.4})Ge_2O_6:4\% Cr^{3+}$, respectively.

Fig. S3. (a) PLE spectra of $Mg_{2-2x}Ge_2O_{6:}xCr^{3+},xLi^+$ (x = 0.005-0.15) samples under the optimum emission wavelength of each sample. (b) PL spectra of $Mg_{2-2x}Ge_2O_{6:}xCr^{3+},xLi^+$ (x = 0.005-0.15) samples under the 454 nm excitation.

Fig. S4. Stokes shift of $(Mg_{1-y}Li_y)(Mg_{1-y}Sc_y)Ge_2O_6:4\%Cr^{3+}$ (y = 0-1) samples with different compositions.

Fig. S5. FWHM vs temperature of the $(Mg_{1-y}Li_y)(Mg_{1-y}Sc_y)Ge_2O_6:4\%Cr^{3+}$ (y = 0, 0.4, 0.5, 1) samples.

Fig. S6. (a) Plots of $Ln(I_0/I_T - 1)$ versus 1/kT of the $(Mg_{1-y}Li_y)(Mg_{1-y}Sc_y)Ge_2O_6:4\%Cr^{3+}$ (y = 0, 0.4, 0.5, 1) samples. (b)-(d) Normalized PL spectra with BaSO₄ as the reference under the 454, 470 and 460 nm excitation for quantum efficiency measurements of Mg₂Ge₂O₆:4%Cr³⁺,4%Li⁺, $(Mg_{0.6}Li_{0.4})(Mg_{0.6}Sc_{0.4})Ge_2O_6:4\%Cr^{3+}$ and LiScGe₂O₆:4%Cr³⁺ respectively.