Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Materials for

Optimized energy storage performance by depolarization field in

BaMn_{0.01}Ti_{0.99}O₃/Na_{0.5}Bi_{0.5}TiO₃ multilayer thin films

Caiyu Yue^{a, b}, Huajun Sun^{a, b, c*}, Chao Yan^{a, b}, Xuehui Huang^b, Huiting Sui^{a, b, c}, Yunlong Hu^{a,b}

^aState Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, People's Republic

of China;

^bSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China;

°Advanced Ceramics Institute of Zibo New & High-Tech Industrial Development Zone, Zibo 255000, People's Republic of China;

This file includes:

Fig. S1, Fig. S2

Fig. S1 Changes of electrical hysteresis loop of BMxT(1-x) films.

Fig. S2 Temperature dependences of dielectric property for N=0 and N=2.