Supporting Information

Structural Engineering of Single-Crystal-like Perovskite Nanocrystals for Ultrasensitive Photodetector Applications

Mi Kyong Kim,¹ Zumuukhorol Munkhsaikhan,² Se Gyo Han,³ Su Min Park,² Haedam Jin,¹ Jeongbeom Cha,¹ Seok Joo Yang,³ Jungyoon Seo,⁴ Hwa Sung Lee,^{4*} Chel-Jong Choi,^{2*} Min Kim^{1,2*}

¹Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea.

²School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.

³Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea

⁴Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea

Email: hslee78@hanyang.ac.kr, cjchoi@jbnu.ac.kr, minkim@jbnu.ac.kr

Figure S1. XPS spectra of the CsPbBr₃ QD, NW, and NR for (a) Cs 3d, (b) Pb 4f, (c) Br 3d, (d) C 1s, (e) O 1s, and (f) N 1s. (g) Total XPS spectra of the CsPbBr₃ QD, NW, and NR.

Figure S2. HRTEM images of the perovskite NWs and NRs. The red lines indicate crystal diffraction planes.

Figure S3. Temporal photocurrent response of the CsPbBr₃ NWs and NRs photodetectors under 8-mW illumination. Compared to the NWs device, the NRs device showed a higher photocurrent and a constant response.

Figure S4. Dark I-V curve of the CsPbBr₃ QDs-based photodetector depending on the scan direction.

Figure S5. Logarithmic plots of the photocurrent versus illumination power.

Figure S6. Responsivity of the fabricated QDs, NWs, and NRs-based photodetector devices.

Figure S7. XRD of the pristine CsPbBr₃ (a) QDs, (b) NWs, and (c) NRs. XRD of the aged CsPbBr₃ (d) QDs, (e) NWs, and (f) NRs after 9 months.

Figure S8. FESEM images of the fresh photodetectors based on the CsPbBr₃ perovskite (a) QDs, (b) NWs, and (c) NRs. (d-f) FESEM images of the aged CsPbBr₃ photodetectors based on (d) QDs, (e) NWs, and (f) NRs after 9 months.

•

Figure S9. (a) X-ray diffraction, (b) SEM image, and (c) OM image of the CsPbBr₃ bulk thin film. (d) X-ray diffraction, (e) SEM image, and (f) OM image of the CsPbBr₃ single crystals.

Figure S10. (a) Dark current density and (b) photocurrent density of the CsPbBr₃ QDs, NWs, and NRs-based photodetector devices.