Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Bandgap and dimension regulation of CsPbI₃ perovskite through bromine-terminated ligand for efficient pure red electroluminescence[†]

Xinyue Liu, Feng Zhang, Shuai Chang*, Chenhui Wang, Cuili Chen, Shipei Sun, Tong Zhu, and Haizheng Zhong

Figure S1. Schematic illustration of in situ fabrication process of q-2D PBAX-CsPbI₃ films.

Figure S2. XPS spectra of Cs 3d of CsPbI₃, Br-CPI and I-CPI films.

Figure S3. Schematic diagram showing the structures of the layered CsPbI₃ perovskites.

Figure S4. The corresponding CIE color coordinates of the devices based on Br-CPI films with different ligand ratios.

Figure S5. Summary of EQEs of pure red (620-660 nm) PeLEDs

Figure S6. The corresponding CIE color coordinates of the optimized device.

Table S1. The performance parameter	s of PeLEDs based	on Br-CPI films	s with different
PBABr ratios.			

Ratio	Turn-on Voltage [V]	Maximum luminance [cd m ⁻²]	EL peak [nm]	FWHM [nm]	Peak EQE [%]	CIE (x, y)
0.84	2.9	363	620	44	2.44	(0.6534, 0.345)
0.82	2.9	304	632	42	3.11	(0.682, 0.316)
0.80	2.9	466	640	40	4.33	(0.694, 0.304)
0.70	2.9	883	650	45	2.36	(0.698, 0,299)
0.60	3.0	600	661	45	1.09	(0.703, 0.295)