Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Synthesis of Ultra-high Specific Surface Area Aerogels with Nitrogen enriched Ti₃C₂T_x

nanosheets as High Performance Supercapacitor Electrodes

Xudong Liu, Yong Liu*, Shangli Dong, Xuefeng Zhang, Shida Hou

Corresponding authors: Prof. Yong Liu E-mail: liuy@hit.edu.cn.

Methods for calculation of specific capacitance

CV test

The gravimetric capacitances were calculated according to the following equations:

$$Cg = \frac{\int Idv}{v \times V \times m} \tag{1}$$

Where C_g (F g⁻¹) is the gravimetric capacitance of the electrode, I (A) is the charge-discharge current, v(V/s) scan rate, m(g) is the mass of the working electrode. V (V) is voltage window. *GCD test*

The v gravimetric capacitances were calculated according to the following equations:

$$Cg = \frac{I\Delta t}{\Delta V \times m} \tag{2}$$

Where C_g (F g⁻¹) is the gravimetric capacitance of the electrode, I (A) is the charge-discharge current,

 Δt (s) is the discharge time, ΔV (V) represents voltage drop on discharging (excluding the IR drop), *m* (g) is the mass of the working electrode.

Energy (E) and power densities (P) of the ASC device were calculated as follows:

$$E = \frac{1}{2}C\Delta V^{2}$$
(3)
$$P = \frac{E}{\Delta t}$$
(4)

Where C (F g⁻¹) is the gravimetric capacitance of the electrode, ΔV (V) is voltage window , Δt (s) is the discharge time.

The mass ratio of the positive electrode to the negative electrode was calculated based on charge balance theory according to the following equation:

$$\frac{m_{+}}{m_{-}} = \frac{C_{-} \times V_{-}}{C_{+} \times V_{+}}$$
(5)

Where m_+/m_- are the mass of positive electrode/negative electrode, V_+/V_- (V) are the voltage window of electrode/negative electrode, C_+/C_- (F g⁻¹) are the gravimetric capacitance of positive electrode/negative electrode.

The mass ratio for the positive to negative electrodes is calculated to be 1:2.

Figure S1 Tyndall effect of $Ti_3C_2T_x$ suspension

Figure S2. The morphology of single layer MXene nanosheets under TEM.

Figure S3 Optical topography of products under different hydrothermal reaction conditions.

Figure S4 a) SEM morphology of $Ti_3C_2T_x$ -O. b) XRD patterns of $Ti_3C_2T_x$ -O.

Figure S5 TEM morphology of a) N-Ti₃C₂T_x-2 b) N-Ti₃C₂T_x-aerogel.

Figure S6 HRTEM of a) N-Ti₃C₂T_x-2 b) N-Ti₃C₂T_x-aerogel.

Figure S7 CV curves from 1-100 mVs⁻¹ a) Ti₃C₂T_x-film b) N-Ti₃C₂T_x-2 c) N-Ti₃C₂T_x-aerogel.

Figure S8 GCD curves from 1-100 A g⁻¹ a) $Ti_3C_2T_x$ -film b) N- $Ti_3C_2T_x$ -2 c) N- $Ti_3C_2T_x$ -aerogel.

Figure S9 Pseudocapacitance contribution at 1 mVs⁻¹ a) $Ti_3C_2T_x$ -film b) N- $Ti_3C_2T_x$ -2 c) N- $Ti_3C_2T_x$ -aerogel.

Figure S10 a,b) XRD patterns, c) Raman peaks of the prepared electrodes before and after 5000 chargedischarge cycles

Materials	Energy	Power	Cycling	Reference
	density(Wh kg ⁻¹)	density(W kg ⁻¹)	performance	
CF/MnO ₂ //MXene/CF	6.4	1107	84%(3000 cycles)	1
RuO2//h-WO3	16.92	540	171.75%(6500	2
			cycles)	
Bi2O3//graphite	8	2040	80%(5000 cycles)	3
Bi2O3//graphite	13	793	80%(2000 cycles)	4
AC//MnO2@NH4MnF3	11.2	10000	98%(1000 cycles)	5
NiCo2Se4//AC	25	490	93%(5000 cycles)	6
N-Ti ₃ C ₂ T _x -aerogel // AC	21.7	6000	85%(5000 cycles)	This work

Table S1 The comparison with other reported ASCs.

- 1. Y. Wei, M. Zheng, W. Luo, B. Dai, J. Ren, M. Ma, T. Li and Y. Ma, *Journal of Energy Storage*, 2022, **45**.
- 2. S.-H. Ji, N. R. Chodankar and D.-H. Kim, *Electrochimica Acta*, 2019, 325.
- 3. N. M. Shinde, Q. X. Xia, J. M. Yun, P. V. Shinde, S. M. Shaikh, R. K. Sahoo, S. Mathur, R. S. Mane and K. H. Kim, *Electrochimica Acta*, 2019, **296**, 308-316.
- 4. P. V. Shinde, B. G. Ghule, N. M. Shinde, Q. X. Xia, S. Shaikh, A. V. Sarode, R. S. Mane and K. H. Kim, *New Journal of Chemistry*, 2018, **42**, 12530-12538.
- 5. B. Li, X. Zhang, J. Dou and P. Zhang, *Electrochimica Acta*, 2020, **347**.
- 6. S. Li, Y. Ruan and Q. Xie, *Electrochimica Acta*, 2020, **356**.