Activity and selectivity of N_2 fixation on B doped g-C₉N₁₀: A density functional theory study

Yuelin Wang^a, Thanh Ngoc Pham^a, Likai Yan^{*b} and Yoshitada Morikawa^{*a,c,d}

^aDepartment of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan

^bInstitute of Functional Materials Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China

^cElements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan.

^dResearch Center for Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan In our work, the phonon contribution of solids to free energy is negligible. To verify this point, we estimated the $\Delta E_{ZPE} - T\Delta S$ term of N₂ +* \rightarrow N₂* process on B_A doped g-C₉N₁₀ with and without phonon contribution using harmonic approximation¹, the equation is as shown in following:²

$$E_{ZPE} = \frac{1}{2} \sum_{i} hv_i$$

$$-TS = k_B T \sum_{i} \ln\left(1 - e^{-\frac{hv_i}{K_B T}}\right) - \sum_{i} hv_i \left(\frac{1}{\frac{hv_i}{k_B T}}\right)$$

$$(1)$$

where h, v_i and k_B are Planck constant, vibrational frequencies and Boltzmann constant, respectively. Vibrational analyses were performed using the finite difference method at the Γ point only.

As shown in Table S1, we found that $\Delta E_{ZPE} - T\Delta S$ values with and without phonon contribution differ by only 40 meV. Therefore, only the calculation of E_{ZPE} and S of reaction intermediates are needed as the contribution of substrate can be offset.

Table S1. Calculated *E*_{ZPE} and *TS* values (in eV) of N₂ adsorbed B_A doped g-C₉N₁₀, B_A doped g-C₉N₁₀ and N₂ gas with and without phonon contribution. Calculated $\Delta E_{ZPE} - T\Delta S \text{ of } N_2 + * \rightarrow N_2*$ process on B_A doped g-C₉N₁₀ with and without phonon contribution.

	with phonon contribution			without phonon contribution				
system	N ₂ adsorbed	B _A doped	N ₂ gas	N ₂	adsorbed	B _A	doped	N ₂ gas
	B _A doped	g-C ₉ N ₁₀		B _A	doped	g-C	₉ N ₁₀	
	$g-C_9N_{10}$			g-C	₉ N ₁₀			
$E_{\rm ZPE}$	3.02	2.87	0.148		0.22		0	0.148
TS	0.64	0.74	0.593		0		0	0.593
process	$N_2 + * \rightarrow N_2*$			$N_2 + * \rightarrow N_2*$				
ΔE_{ZPE}			0.072					
$T\Delta S$			-0.593					
$\Delta E_{\rm ZPE}$ – $T\Delta S$			0.665					

Figure S1. Variations of temperature and energy against time for *ab-initio* molecular dynamics (AIMD) simulations of the B_{C1} (a), B_{N1} (b) and B_A doped g- C_9N_{10} (c), and the insets show top and side views of the snapshot of the atomic configuration. The simulation is run at 500 K for 4.8 ps with a time step of 1.2 fs.

To study kinetics of end-on N₂ to side on N₂, rotation process was first calculated using the nudged elastic band (NEB) method³ and the transition state was further refined by using climbing image nudged elastic band (CI-NEB) method^{4,5}. The activation free energy (G_a) can be evaluated by the following equation:

$$G_{\rm a} = G_{\rm TS} - G_{\rm IS}$$

where G_{IS} and G_{TS} stand for the free energy of initial and transition state, respectively.

Figure S2. Free energy barrier diagram of N_2 rotation process on B_A doped g-C₉N₁₀ (end on $N_2^* \rightarrow$ side on N_2^*).

Figure S3. Free energy diagrams for N_2 reduction on B_{N1} doped $g-C_9N_{10}$ through (a) alternating, (b) distal, (c) mixed II and (d) mixed III mechanisms at different applied potentials.

Figure S4. Free energy diagrams for N_2 reduction on B_A doped g- C_9N_{10} through (a) alternating, (b) distal, (c) mixed II and (d) mixed III mechanisms at different applied potentials.

process		B _{N1} case
		ΔG
		(eV)
adsorption	$N_2 + * \rightarrow NN^*$	-0.90
1e ⁻	$NN^* + e^- + H^+ \rightarrow NNH^*$	0.62
2e-	NNH* + e^- + $H^+ \rightarrow NH_2N*$	-0.75
	NNH* + e^- + $H^+ \rightarrow$ NHNH*	-0.08
3e ⁻	$NH_2N^* + e^- + H^+ \rightarrow NH_2NH^*$	-0.25
	$NH_2N^* + e^- + H^+ \rightarrow N^* + NH_3$	0.37
	NHNH* + e^- + $H^+ \rightarrow NH_2NH^*$	-1.44
4e-	$NH_2NH^* + e^- + H^+ \rightarrow NH_2NH_2^*$	-0.44
	$N^* + e^- + H^+ \rightarrow NH^*$	-0.85
	$NH_2NH^* + e^- + H^+ \rightarrow NH^* + NH_3$	-0.13
5e-	$\mathrm{NH}_2\mathrm{NH}_2^*$ + e ⁻ + H ⁺ \rightarrow NH_2^* + NH_2^*	-1.15
	$\rm NH^*$ + e ⁻ + H ⁺ \rightarrow $\rm NH_2^*$	-1.36
6e ⁻	NH_2^* + e ⁻ + H ⁺ \rightarrow NH_3^*	-1.13
desorption	$\rm NH_3^* \rightarrow \rm NH_3$ + *	2.79

Table S2. Calculated free energy of the reaction path followed by N_2RR on B_{N1} doped g- C_9N_{10} .

process		B _A case
		$\Delta G (\mathrm{eV})$
adsorption	$N_2 + * \rightarrow NN*$	-0.85
1e-	NN* + e^- + $H^+ \rightarrow NNH^*$	0.20
2e⁻	NNH* + e^- + $H^+ \rightarrow NH_2N^*$	-0.67
	NNH* + e^- + $H^+ \rightarrow NHNH^*$	-0.24
3e ⁻	$NH_2N^* + e^- + H^+ \rightarrow NH_2NH^*$	-0.92
	$\rm NH_2N^*$ + e ⁻ + H ⁺ \rightarrow $\rm NNH_3^*$	0.1
	NHNH* + e^- + $H^+ \rightarrow NH_2NH^*$	-1.35
4e⁻	$NH_2NH^* + e^- + H^+ \rightarrow NH_2NH_2^*$	0.34
	$NNH_3 + e^- + H^+ \rightarrow NH^* + NH_3$	-0.57
	$\rm NH_2NH^*$ + e ⁻ + H ⁺ \rightarrow $\rm NH^*$	0.45
	+ NH ₃	
5e-	$\rm NH_2\rm NH_2^*$ + e ⁻ + H ⁺ \rightarrow	-2.60
	NH ₂ *+NH ₃	
	NH^* + e ⁻ + H ⁺ \rightarrow NH_2^*	-2.71
6e ⁻	NH_2 * + e ⁻ + H ⁺ \rightarrow NH_3 *	0.44
desorption	$\rm NH_3^* \rightarrow \rm NH_3$ + *	2.85

Table S3. Calculated free energy of the reaction path followed by $N_2 RR$ on B_A doped g- $C_9 N_{10}.$

Figure S5. The eight possible H adsorption sites on B_{N1} doped *g*-C₉N₁₀ (a) and B_A doped *g*-C₉N₁₀ (c). The pink, blue, and gray balls denote boron, nitrogen, and carbon atoms, respectively. The Gibbs free energy profile of hydrogen evolution reaction (HER) of B_{N1} doped *g*-C₉N₁₀ (b) and B_A doped *g*-C₉N₁₀ (d). H adsorption on N1 site of B_A doped *g*-C₉N₁₀ broke the structure, so it is not shown in HER diagram.

Figure S6. The band gap, PDOS HOMO and LUMO distributions of B_{N1} doped g-C₉N₁₀ (a), B_A doped g-C₉N₁₀ in spin up channel (b) and spin down channel (c) by using GGA/PBE functional.

Reference

- D. R. Lide, CRC handbook of physics and chemistry, CRC Press, Boca Raton, USA 2001, 76,1995-1996.
- 2. C. Ling, X. Niu, Q. Li, A. Du, J. Wang, J. Am. Chem. Soc., 2018, 140, 14161-14168.
- 3. H. Kim, A. Tkatchenko, J. Cho, M. Scheffler, Phys. Rev. B., 2012, 85, 041403.
- 4. G. Henkelman, Jonsson, H. J. Chem. Phys., 2000, 113, 9978-9985.
- 5. G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys., 2000, 113, 9901-9904.