Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Eu(III) Functionalized HOFs Based on Machine-Learning-Assisted Fluorescence

Sensing: Discrimination of Quinolones via PCA and BPNN Model

Kai Zhu^a, Xin Xu^a and Bing Yan^a*

a School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092,

China.

^{*} Corresponding author: Email address: <u>byan@tongji.edu.cn</u> (Bing Yan)

Electronic supplementary information

Fig. S1. (a) Experimental PXRD patterns of Tb@HOF-GS-10 (blue line), Sm@HOF-GS-10 (green line), Dy@HOF-GS-10 (purple line) and simulated PXRD pattern (red line). (b) FT-IR spectra of HOF-GS-10 (red line), Tb@HOF-GS-10 (blue line), Sm@HOF-GS-10 (green line) and Dy@HOF-GS-10 (purple line). **Fig. S2.** (a) XPS spectra of Eu 3d electron in Eu(NO₃)·6H₂O. (b) XPS spectra of Eu 3d electron in **1**. (c) XPS spectra of O1s in HOF-GS-10. (d) XPS spectra of O1s in **1**.

Fig. S3. (a) SEM picture of HOF-GS-10. (b) SEM picture of 1.

Fig. S4. EDX mapping images of O, N and S elements respectively in HOF-GS-10.

Fig. S5. (a) The element content of C (48.40%), N (17.96%), O (17.51%) and S (16.14%) elements in EDX energy spectrum of HOF-GS-10. (b) The element content of C (33.14%), N (2.42%), O (21.51%), S (12.40%) and Eu (30.52%) elements in EDX energy spectrum of **1**.

Fig. S6. (a) Excitation spectrum and Emission spectra of 1,5-napthalenedisulfonic acid. (b) Excitation spectrum and Emission spectra of HOF-GS-10.

Fig. S7. (a) Excitation spectrum and Emission spectra of Tb@HOF-GS-10. (b) Excitation spectrum and Emission spectra of Sm@HOF-GS-10. (c) Excitation spectrum and Emission spectra of Dy@HOF-GS-10. (d) CIE chromaticity diagram obtained under excitation at 323 nm of **1** mixed with eight quinolones (QNs). The inset shows that **1** mixed with eight QNs is excited under 310 nm laboratory UV light. (The relative values of the CIE chromaticity diagram of **1** mixed with eight QNs are shown in Table S2.)

Fig. S8. (a) Dependence of emission intensity for **1** on temperature (10–50 $^{\circ}$ C) upon λ_{ex} = 323 nm. (b) Histogram of emission intensity for **1** on temperature (10–50 $^{\circ}$ C) upon λ_{ex} = 323 nm.

Fig. S9. Canonical 2D score plot for response patterns as obtained from PCA for ten QNs at 10⁻³ M. Ellipses represent 95% confidence.

Fig. S10. Luminescence intensity of 616 nm peak for **1** after four repetitions with 10⁻³ M eight QN solutions. (a) ciprofloxacin (CF), (b) flumequine (FQ), (c) gatifloxacin (GF), (d) levofloxacin (LF), (e) marbofloxacin (MF), (f) norfloxacin (NF), (g) ofloxacin (OF) and (h) pefloxacin (PF).

Fig. S11. Time-response emission spectra at 616 nm (excited at 323 nm) of **1** upon addition of 10^{-3} M eight QNs. (a) ciprofloxacin (CF): RT = 52 s, (b) flumequine (FQ): RT = 32 s, (c) gatifloxacin (GF): RT = 61 s, (d) levofloxacin (LF): RT = 79 s, (e) marbofloxacin (MF): RT = 26 s, (f) norfloxacin (NF): RT = 39 s, (g) ofloxacin (OF): RT = 47 s and (h) pefloxacin (PF): RT = 67 s. (RT: response time)

Fig. S12. The chemical structural formula of eight QNs.

Fig. S13. Schematic diagram for the fluorescence response of **1** toward QNs mechanism. (ISC: intersystem crossing; ET: energy transfer)

Fig. S14. Decay lifetimes of emission peak of 616 nm ($Eu^{3+5}D_0 \rightarrow {}^7F_2$ transition) for **1** with 10⁻³ M eight QNs. (a) ciprofloxacin (CF), (b) flumequine (FQ), (c) gatifloxacin (GF), (d) levofloxacin (LF), (e) marbofloxacin (MF), (f) norfloxacin (NF), (g) ofloxacin (OF) and (h) pefloxacin (PF).

Fig. S15. Canonical 2D score plot for response patterns as obtained from PCA for 10⁻³ M LF、 GF and 1:1 mixture of LF and GF. Ellipses represent 95% confidence.

Fig. S16. Canonical 2D score plot for response patterns as obtained from PCA for eight QNs at 10^{-3} M in various components in (a) urine and (b) serum system (λ_{ex} = 323 nm). Ellipses represent 95% confidence.

Fig. S17. Network training curve of the BPNN. Horizontal axis: Epoch; Vertical axis: Training MSE

Fig. S18. Deviation curve of the BPNN (OV: original value; CV: calculated value). Horizontal axis: Eight concentrations of input items; Vertical axis: Training MSE.

Table S1. Element contents of C, N, O, S in EDX energy spectrum HOF-GS-10 and C, N, O, S, Eu in EDX energy spectrum **1**.

Table S2. The relative values of the CIE chromaticity diagram of 1 mixed with eight QNs.

Table S3. Summary of fluorescence sensing parameters of 1 for detecting eight QNs in ethanol System.

Table S4. Summary of the methods for sensing FQ.

Table S5. Summary of fluorescence decay lifetime of 1 in ethanol (ET), 1 powder and 1 mixed with
 eight QNs at 298 K.

Table S6. Summary of input and output information during the training of BPNN for GF concentrations detection.

Table S7. Network structure information.

 Table S8 The summary of mean square error (MSE), original value (OV.), calculated value (CV.),

 variance (Var.).

Table S9. The summary of input and output information in real batch calculation during the test ofBPNN.

Experimental Section

Materials and physical measurements

The PCA model was constructed by Orign 2021 program. The BPNN model was constructed in Maishi Neural Network program package. Ln@(NO₃)₃·6H₂O (Ln=Eu, Tb, Sm, Dy) was prepared by dissolving their oxides in excess hydrogen nitrate with continuous stirring, followed by evaporation and crystallization several times. All the other reagents and solvents employed were commercially available and used as received without further purification. Ultrapure water was used throughout all experiments. The power X-ray diffraction (PXRD) pattern was recorded via a Bruker D8 Advance diffractometer, with a scan range of 2 theta from 5 to 50°. Fourier transform infrared spectra (FT-IR) of powder samples were collected on a Nicolet IS10 infrared spectrum radiometer in the range of 4000 -400 cm⁻¹ using KBr slices. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis were performed on a Hitachi S-4800 field emission scanning electron microscope operating at 3 KV and 15 KV, respectively. X-ray photoelectron spectroscopy (XPS) spectra were recorded under ultrahigh vacuum (\leq 10⁻⁶ Pa) at a pass energy of 93.90 eV with an Axis Ultra DLD spectrometer (Kratos, Japan) by using an Mg K α (1253.6 eV) anode. The excitation and emission spectra of the experimental samples were obtained on an Edinburgh FLS920 spectrophotometer with a xenon lamp (450 W) as an excitation source. Luminescence lifetime measurements were measured at room temperature on an Edinburgh FLS920 phosphorimeter using a microsecond lamp (100 mW). The corresponding Commission International de l'Eclairage (CIE) color coordinates were calculated on the basis of the international CIE standards.

Fig. S1. (a) Experimental PXRD patterns of Tb@HOF-GS-10 (blue line), Sm@HOF-GS-10 (green line), Dy@HOF-GS-10 (purple line) and simulated PXRD pattern (red line). (b) FT-IR spectra of HOF-GS-10 (red line), Tb@HOF-GS-10 (blue line), Sm@HOF-GS-10 (green line), Dy@HOF-GS-10 (purple line).

Fig. S2. (a) XPS spectra of Eu 3d electron in $Eu(NO_3) \cdot 6H_2O$. (b) XPS spectra of Eu 3d electron in **1**. (c) XPS spectra of O1s in HOF-GS-10. (d) XPS spectra of O1s in **1**.

Fig. S3. (a) SEM picture of HOF-GS-10. (b) SEM picture of 1.

Fig. S4. EDX mapping images of O, N and S elements respectively in HOF-GS-10.

Fig. S5. (a) The element content of C (48.40%), N (17.96%), O (17.51%) and S (16.14%) elements in EDX energy spectrum of HOF-GS-10. (b) The element content of C (33.14%), N (2.42%), O (21.51%), S (12.40%) and Eu (30.52%) elements in EDX energy spectrum of **1**.

Fig. S6. (a) Excitation spectrum and Emission spectra of 1,5-napthalenedisulfonic acid. (b) Excitation spectrum and Emission spectra of HOF-GS-10.

Fig. S7. (a) Excitation spectrum and Emission spectra of Tb@HOF-GS-10. (b) Excitation spectrum and Emission spectra of Sm@HOF-GS-10. (c) Excitation spectrum and Emission spectra of Dy@HOF-GS-10. (d) CIE chromaticity diagram obtained under excitation at 323 nm of **1** mixed with eight quinolones (QNs). The inset shows that **1** mixed with eight QNs is excited under 310 nm laboratory UV light. (The relative values of the CIE chromaticity diagram of **1** mixed with eight QNs are shown in Table S2.)

Fig. S8. (a) Dependence of emission intensity for **1** on temperature (10–50 $^{\circ}$ C) upon λ_{ex} = 323 nm. (b) Histogram of emission intensity for **1** on temperature (10–50 $^{\circ}$ C) upon λ_{ex} = 323 nm.

Fig. S9. Canonical 2D score plot for response patterns as obtained from PCA for ten QNs at 10⁻³ M.

Ellipses represent 95% confidence.

Fig. S10. Luminescence intensity of 616 nm peak for **1** after four repetitions with 10⁻³ M eight QN solutions. (a) ciprofloxacin (CF), (b) flumequine (FQ), (c) gatifloxacin (GF), (d) levofloxacin (LF), (e) marbofloxacin (MF), (f) norfloxacin (NF), (g) ofloxacin (OF) and (h) pefloxacin (PF).

Fig. S11. Time-response emission spectra at 616 nm (excited at 323 nm) of **1** upon addition of 10^{-3} M eight QNs. (a) ciprofloxacin (CF): RT = 52 s, (b) flumequine (FQ): RT = 32 s, (c) gatifloxacin (GF): RT = 61 s, (d) levofloxacin (LF): RT = 79 s, (e) marbofloxacin (MF): RT = 26 s, (f) norfloxacin (NF): RT = 39 s, (g) ofloxacin (OF): RT = 47 s and (h) pefloxacin (PF): RT = 67 s. (RT: response time)

Fig. S12. The chemical structural formula of eight QNs.

Fig. S13. Schematic diagram for the fluorescence response of **1** toward QNs mechanism. (ISC: intersystem crossing; ET: energy transfer)

Fig. S14. Decay lifetimes of emission peak of 616 nm ($Eu^{3+5}D_0 \rightarrow {}^7F_2$ transition) for **1** with 10⁻³ M eight QNs. (a) ciprofloxacin (CF), (b) flumequine (FQ), (c) gatifloxacin (GF), (d) levofloxacin (LF), (e) marbofloxacin (MF), (f) norfloxacin (NF), (g) ofloxacin (OF) and (h) pefloxacin (PF).

Fig. S15. Canonical 2D score plot for response patterns as obtained from PCA for 10⁻³ M LF GF and 1:1 mixture of LF and GF. Ellipses represent 95% confidence.

Fig. S16. Canonical 2D score plot for response patterns as obtained from PCA for eight QNs at 10^{-3} M in various components in (a) urine and (b) serum system (λ_{ex} = 323 nm). Ellipses represent 95% confidence.

Fig. S17. Network training curve of the BPNN. Horizontal axis: Epoch; Vertical axis: Training MSE

Fig. S18. Deviation curve of the BPNN (OV: original value; CV: calculated value). Horizontal axis: Eight concentrations of input items; Vertical axis: Training MSE.

Table S1. Element contents of C, N, O, S in EDX energy spectrum HOF-GS-10 and C, N, O, S, Eu in EDX

energy spectrum 1 .	
----------------------------	--

Flowert	Weight pe	rcentages (%)	Atomic percentage (%)		
Element –	HOF-GS-10	Eu@HOF-GS-10	HOF-GS-10	Eu@HOF-GS-10	
С	48.40	33.14	57.04	56.79	
Ν	17.96	2.42	18.15	3.50	
0	17.51	21.51	15.48	27.57	
S	16.14	12.40	7.13	8.02	
Eu	-	30.52	-	4.12	
Total	100	100	100	100	

Table S2. The relative values of the CIE chromaticity diagram of **1** mixed with eight QNs.

CIE chromaticity diagram					
Serial number	Compounds	CIE			
(1)	Blank	(0.5992, 0.3356)			
(2)	Flumequine	(0.2852, 0.1341)			
(3)	Norfloxacin	(0.2232, 0.1175)			
(4)	Pefloxacin	(0.1589, 0.0729)			
(5)	Marbofloxacin	(0.3747, 0.3546)			
(6)	Ofloxacin	(0.2588, 0.3058)			
(7)	Levofloxacin	(0.2908, 0.3178)			
(8)	Gatifloxacin	(0.3498, 0.2694)			
(9)	Ciprofloxacin	(0.3617, 0.1985)			

Table S3. Summary of fluorescence sensing parameters of 1 for detecting eight QNs in ethanol System.

Drug	Concentration range	Linear relationship	K _{EC} (mM)	R ²	Detection limit (mg L ⁻¹)
NF	10 ⁻⁷ - 10 ⁻⁵	y = 6 ×10 ⁹ x - 170.29	711.56	0.995	0.00782
OF	10-7 - 10-5	$y = 2 \times 10^9 x + 3804.9$	273.87	0.998	0.0265
CF	5×10 ⁻⁸ - 10 ⁻⁵	y =7 × 10 ⁹ x + 486.69	965.93	0.9949	0.00695
LF	5×10 ⁻⁸ - 10 ⁻⁵	y = 2 × 10 ⁹ x + 1166.5	238.67	0.9992	0.0265
MF	5×10 ⁻⁸ - 10 ⁻⁵	$y = 4 \times 10^9 x + 2272.3$	421.91	0.9987	0.0133
PF	5×10 ⁻⁸ - 10 ⁻⁵	$y = 4 \times 10^9 x + 2402.3$	526.68	0.9921	0.0122
GF	5×10 ⁻⁸ - 5×10 ⁻⁵	$y = 3 \times 10^9 x + 5154.8$	352.01	0.9978	0.0184
FQ	5×10 ⁻⁸ - 5×10 ⁻⁶	$y = 2 \times 10^9 x + 709.32$	117.72	0.9915	0.0192

Table S4. Summary of the methods for sensing FQ.

method	LOD (mg L ⁻¹)	K _{EC} (mM ⁻¹)	Ref
Fluorescence detection (Ln@MOF)	0.0723	167.98	[S1]
Fluorescence detection (Ln@HOF)	0.114	-	[S2]
Plate diffusion (Yersinia spp. Strain)	0.1	-	[S3]
Biomimetic enzyme-linked immunosorbent assay	0.141	-	[S4]
Chiral liquid chromatography-tandem mass spectrometry	0.015	-	[\$5]
Chiral liquid chromatography	0.016	-	[S6]
Liquid chromatography-electron spray ionization mass spectrometry	0.151	-	[S7]

Reference

- [S1] S. Li, Y. Li, B. Yan, CrystEngComm, 2021, 23, 5345-5352.
- [S2] X. Xu, J. Wang, B. Yan, Adv. Funct. Mater., 2021, **31**, 2103321.
- [S3] P. Navrátilová, J. Vyhnálková, L. Vorlová, J. Vet. Res., 2017, **61**, 467-472.
- [S4] W. Liu, J. Wang, W. Yu, X. Wang, *Food Anal. Methods*, 2020, **13**, 403-411.
- [S5] S. Li, B. Liu, M. Xue, J. Yu, X. Guo, *Chirality*, 2019, **31**, 968-978.
- [S6] Y.-F. Wang, X.-F. Gao, H.-X. Jin, Y.-G. Wang, W.-J. Wu, X.-K. Ouyang, *Chirality*, 2016, **28**, 649-655.
- [S7] Z. H. Hu, Y. G. Wang, H. X. Jin, X. K. Ouyang, W. J. Wu, Chirality, 2016, 28, 737-743.

Sample	λ _{ex} (nm)	λ _{em} (nm)	τ ₁ (μs)	A 1	Percentage (%)	τ₂ (μs)	A ₂	Percentage (%)	τ* (μs)	χ²
1 in ET	323	616	371.48	330.92	100					1.001
1 Powder	323	616	385.04	1100.18	100					1
1-FQ	323	616	558.89	878.35	100					0.997
1-MF	323	616	871.8	1002.75	100					1.38
1-OF	323	616	927.22	963.35	100			_		1.122
1-LF	323	616	935.68	807.11	100					1.379
1-CF	323	616	983.19	598.42	100					1.469
1-NF	323	616	997.86	518.75	100					1.266
1-GF	323	616	1129.65	953.87	100					1.256
1-PF	323	616	563.81	1002.4	64.91	3987.98	76.63	35.09	1765.54	1.196

Table S5. Summary of fluorescence decay lifetime of 1 in ethanol (ET), 1 powder and 1 mixed witheight QNs at 298 K.

 $[\tau^* = (A_1\tau_1^2 + A_2\tau_2^2)/(A_1\tau_1 + A_2\tau_2)]$

Table S6. Summary of input and output information during the training of BPNN for GF concentrationsdetection.

Input		Output						
I/I ₀	5×10 ⁻⁸ M	1×10 ⁻⁷ M	5×10 ⁻⁷ M	1×10⁻⁵ M	2×10 ⁻⁶ M	5×10 ⁻⁶ M	2×10⁻⁵ M	5×10 ⁻⁵ M
1.12425	1	0	0	0	0	0	0	0
1.62626	0	1	0	0	0	0	0	0
3.33199	0	0	1	0	0	0	0	0
4.10211	0	0	0	1	0	0	0	0
5.64889	0	0	0	0	1	0	0	0
11.4487	0	0	0	0	0	1	0	0
29.5322	0	0	0	0	0	0	1	0
69.2656	0	0	0	0	0	0	0	1

In Table S6, all data is applied for training the BPNN. The I/I_0 values at 616 nm of every GF

concentration as input information are inputted in the input column of the BPNN. Various "0" and "1" inputted into the output column of the BPNN, in which "0" represents the false GF concentration, and "1" represents the correct GF concentration. All data is used to train the BPNN.

Table S7. Network structure information.

Network structure information					
Input layer	1 neurons	1 Paranoid			
Hidden layer 1	6 neurons	1 Paranoid			
Hidden layer 2	6 neurons	1 Paranoid			
Hidden layer 3	6 neurons	1 Paranoid			
Output layer	8 neurons				
Network type	FANN_NETTYPE_LAYER				
Training function	FANN_TRAIN_RPROP				
Error function	FANN_ERRORFUNC_LINEAR				
Termination function	FANN_STOPFUNC_MSE				
Hidden layer excitation function	FANN_SIGMOID_SYMMETRIC				
Output layer excitation function	FANN_SIGMOID_SYMMETRIC				
	Network weight v	value			
Arrangement	Wire number	Output point (n)	Input point (m)	Weight value (W)	
	0	0	2	-0.0889867	
	1	1	2	0.484308	
	2	0	3	0.688136	
	3	1	3	-0.166992	
	4	0	4	0.705895	
1	5	1	4	0.575009	
1	6	0	5	2.01062	
	7	1	5	0.366775	
	8	0	6	0.728024	
	9	1	6	0.691508	
	10	0	7	0.690002	
	11	1	7	0.678255	
	12	2	9	-0.395007	
	13	3	9	0.559811	
	14	4	9	1.19369	
	15	5	9	0.010263	
	16	6	9	1.13474	
	17	7	9	0.569057	
	18	8	9	-0.226494	
	19	2	10	-0.21492	
	20	3	10	0.677634	
	21	4	10	1.92465	
2	22	5	10	0.0486169	
	23	6	10	1.16593	
	24	7	10	-0.815626	
	25	8	10	-0.159978	
	26	2	11	0.396039	
	27	3	11	0.75535	
	28	4	11	3.97776	
	29	5	11	1.14153	
	30	6	11	26.5029	
	31	7	11	608.978	
	32	8	11	1.71353	

33	2	12	0.0955819
34	3	12	1.2952
35	4	12	67.2629
36	5	12	1.17687
37	6	12	230.436
38	7	12	30.8023
39	8	12	2.32355
40	2	13	-0.0917954
41	3	13	0.623873
42	4	13	25.2375
43	5	13	0.0198081
44	6	13	13.4625
45	7	13	4.27035
46	8	13	-0.111031
47	2	14	-0.103488
48	3	14	0.695615
49	4	14	1.38954
50	5	14	-0.138719
51	6	14	1.59029
52	7	14	-0.0399597
53	8	14	-0.101403
54	9	16	0.939571
55	10	16	1.56291
56	11	16	0.331996
57	12	16	0.949294
58	13	16	-3.36237
59	14	16	0.808534
60	15	16	2.57041
61	9	17	1.51703
62	10	17	1.58897
63	11	17	1.03478
64	12	17	2.99107
65	13	17	9.0174
66	14	17	1.30292
67	15	17	0.371097
68	9	18	-0.233343
69	10	18	-0.216328
70	11	18	-0.973328
71	12	18	-1.83077
72	13	18	-0.391698
73	14	18	-0.214747
74	15	18	-0.0605006
75	9	19	122.824
76	10	19	108.874
77	11	19	-0.846042
78	12	19	0.991912
79	13	19	1.1093
80	14	19	19.3405
81	15	19	-1500

82	9	20	1.33649
83	10	20	1.41384
84	11	20	2.16705
85	12	20	-1.92816
86	13	20	1.27245
87	14	20	0.801562
88	15	20	-0.105515
89	9	21	0.910961
90	10	21	0.435861
91	11	21	-0.426692
92	12	21	-0.467539
93	13	21	-0.34581
94	14	21	0.460003
95	15	21	-0.062001
96	16	23	75.5869
97	17	23	195.675
98	18	23	167.497
99	19	23	247.15
100	20	23	9.55186
101	21	23	1137.58
102	22	23	29.5664
103	16	24	-2.65559
104	17	24	-6.2509
105	18	24	28.7103
106	19	24	4.00223
107	20	24	43.2315
108	21	24	21.7192
109	22	24	-7.6881
110	16	25	-7.15568
111	17	25	-18.5733
112	18	25	-3.11314
113	19	25	2.65863
114	20	25	21.4741
115	21	25	-16.853
116	22	25	-12.0277
117	16	26	-1.42526
118	17	26	-12.8793
119	18	26	-15.5003
120	19	26	1.79055
121	20	26	-17.6899
122	21	26	-2.09541
123	22	26	-17.9254
124	16	27	-4.44654
125	17	27	41.5712
126	18	27	0.306322
127	19	27	0.604404
128	20	27	-54.6462
129	21	27	24.7767
130	22	27	-19.304

1	131	16	28	-40.5971
1	.32	17	28	23.3047
1	.33	18	28	-0.0346161
1	.34	19	28	0.174518
1	.35	20	28	-21.7797
1	.36	21	28	-8.89355
1	.37	22	28	-0.768783
1	.38	16	29	-56.7186
1	.39	17	29	2.63563
1	40	18	29	0.143866
1	41	19	29	0.115309
1	42	20	29	44.272
1	43	21	29	0.421034
1	44	22	29	-3.59557
1	45	16	30	-9.44276
1	46	17	30	3.25947
1	47	18	30	7.22379
1	48	19	30	14.6223
1	49	20	30	55.5271
1	150	21	30	46.493
1	151	22	30	-9.86686

Input / output column coefficients for manual calculation

Listing	Minimum	Maximum
1/10	1.06803	72.9112
0.0000005M	0	1
0.0000001M	0	1
0.000005M	0	1
0.000001M	0	1
0.000002M	0	1
0.000005M	0	1
0.00002M	0	1
0.00005M	0	1
	Deviation statistics: r	nean variance
Listing	All rows	Calculation line

Listing	All rows	Calculation line	Test line	
0.0000005M	0	0	0	
0.000001M	7.06113E-09	7.06113E-09	0	
0.000005M	3.57022E-09	3.57022E-09	0	
0.000001M	1.67194E-08	1.67194E-08	0	
0.000002M	1.6875E-12	1.6875E-12	0	
0.000005M	1.20697E-07	1.20697E-07	0	
0.00002M	5.18104E-07	5.18104E-07	0	
0.00005M	6.90625E-12	6.90625E-12	0	

Table S8. The summary of mean square error (MSE), original value (OV.), calculated value (CV.),

variance (Var.).

Input item (I/I₀)		1.12425	1.62626	3.33199	4.10211	5.64889	11.4487	29.5322	69.2656
5×10 ⁻⁸ M (MSE=0)	OV.	1	0	0	0	0	0	0	0
	CV.	1	0	0	0	0	0	0	0
	Var.	0	0	0	0	0	0	0	0
	ov.	0	1	0	0	0	0	0	0
1×10 ⁻⁷ M (MSE=7.06e-09)	CV.	0.00002	0.999964	0.000163	0	0	0	0	0.000168
	Var.	4.000E-10	1.296E-09	2.657E-08	0	0	0	0	2.822E-08
	OV.	0	0	1	0	0	0	0	0
5×10 ⁻⁷ M (MSE=3.57e-09)	CV.	0	0.000029	0.99992	0.0001305	0	0	0.0000655	0.0000005
(11102-0107 0 00)	Var.	0	8.410E-10	6.400E-09	1.703E-08	0	0	4.290E-09	2.500E-13
1×10 ⁻⁶ M (MSE=1.67e-08)	OV.	0	0	0	1	0	0	0	0
	CV.	0.000192	0	0.00007	0.999829	0.0002505	0	0	0
	Var.	3.686E-08	0	4.9E-09	2.924E-08	6.28E-08	0	0	0
	OV.	0	0	0	0	1	0	0	0
2×10 ⁻⁶ M (MSF=1.69e-12)	CV.	0.0000005	0	0	0	0.999999	0.0000035	0	0
(14152-1.052-12)	Var.	2.5E-13	0	0	0	1E-12	1.225E-11	0	0
	OV.	0	0	0	0	0	1	0	0
5×10 ⁻⁶ M (MSE=1.21e- 07)	CV.	0	0	0	0	0.000272	0.999197	0.0004965	0
	Var.	0	0	0	0	7.43E-08	6.448E-07	2.465E-07	0
2×10 ⁻⁵ M (MSE=5.18e-07)	ov.	0	0	0	0	0	0	1	0
	CV.	0	0	0	0	0	0.000511	0.998138	0.0006455
	Var.	0	0	0	0	0	2.611E-07	3.467E-06	4.166E-07
5×10 ⁻⁵ M (MSE=6.91e- 12)	OV.	0	0	0	0	0	0	0	1
	CV.	0	0	0	0	0	0	0.0000025	0.999993
	Var.	0	0	0	0	0	0	6.25E-12	4.9E-11

In Table S8, all data is utilized to test the BPNN. The I/I₀ values at 616 nm of every GF concentration as input information are inputted in the input column of the BPNN. Through the BPNN calculation, various values (0-1) can be outputted, in which the values close to "0" represents the false GF concentrations, the values close to "1" represents the correct GF concentrations. By comparing the OV. with CV., the variance (Var.) can be obtained, which suggests that the BPNN has a good accuracy for distinguishing GF concentrations. Table S9. The summary of input and output information in real batch calculation during the test of

BPNN.

Input data	Output data							
I/I ₀	5×10 ⁻⁸ M	1×10 ⁻⁷ M	5×10 ⁻⁷ M	1×10 ⁻⁶ M	2×10⁻6 M	5×10⁻6 M	2×10⁻⁵ M	5×10⁻⁵ M
1.12425	1	1.98E-05	1.1E-12	0.00019	7.32E-07	0	0	0
1.62626	0	0.999963	2.9E-05	1.5E-08	0	0	0	2.8E-16
3.33199	0	0.000163	0.99992	7E-05	0	0	0	5.6E-17
4.10211	0	0	0.00013	0.99983	5.55E-17	0	0	0
5.64889	0	0	1.6E-14	0.00025	1	0.000272	0	0
11.4487	0	0	1.5E-07	9.5E-11	3.57E-06	0.999197	0.000511	0
29.5322	0	3.60E-11	6.5E-05	3.7E-14	5.33E-15	0.000497	0.998138	2.6E-06
69.2656	0	0.000168	5.2E-07	3.3E-16	1.67E-16	1.87E-14	0.000645	0.99999

In Table S9, all data is utilized to test the BPNN. The I/I_0 values at 616 nm of every GF concentration as

input information are inputted in the input column of the BPNN. Through the BPNN calculation, various values (0-1) can be acquired, in which the values close to "0" represents the false GF concentration, and the values close to 1 represents the correct GF concentration.