Supporting Information for

Computational discovery of In₂XY₂ (X, Y= S, Se and Te; X ≠ Y) monolayers as multifunctional energy conversion materials

Rui Xiong¹, Weiqiang Li¹, Yinggan Zhang², Zhou Cui¹, Cuilian Wen¹, Masakazu

Anpo³, Bo Wu¹, and Baisheng Sa^{1,*}

¹Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China

² College of Materials, Fujian Provincial Key Laboratory of Theoretical and

Computational Chemistry, Xiamen University, Xiamen 361005, P. R. China

³ State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China

Corresponding Author: *bssa@fzu.edu.cn (B. Sa)

Figure S1. The evolution of total energy and snapshot structure from AIMD simulations of (a) In_2SSe_2 , (b) In_2STe_2 , (c) In_2SeS_2 , (d) In_2SeTe_2 , (e) In_2TeS_2 , (f) In_2TeSe_2 for 10 ps at 300 K.

Figure S2. The six stacking configurations of In_2SSe_2/In_2SeS_2 and In_2STe_2/In_2SeTe_2 heterostructures.

Figure S3. The band structures of In_2SSe_2/In_2SeS_2 heterostructure with different stacking configurations using PBE functional.

Figure S4. The band structures of In_2STe_2/In_2SeTe_2 heterostructure with different stacking configurations using PBE functional.

Figure S5 The local density of states (LDOS) of solar cell devices (a) InSSe₂, (b) InSTe₂, (c) InSeS₂, (d) InSeTe₂, (e) InSSe₂/In₂SeS₂ and (f) InSTe₂/In₂SeTe₂.

Figure. S6. (a) In_2STe_2 monolayer in an orthorhombic lattice instead of a hexagonal lattice. (b) Band structure, (c) total energy shift $(E - E_0)$ and (d) band edge positions of In_2STe_2 monolayer as a function of the uniaxial strain ε along both the zigzag (x) and armchair (y) directions by PBE. The vacuum level is set to 0 for reference in (d).

Figure S7. The calculated Grüneisen parameter γ as a function of phonon frequency for In₂STe₂ monolayer.

	L_{In1-X} (Å)	L_{In2-X} (Å)	L _{In1-Y-upper} (Å)	L _{In2-Y-lower} (Å)
In ₂ SSe ₂	2.83	2.42	2.69	2.66
In ₂ STe ₂	2.91	2.42	2.89	2.85
In_2SeS_2	2.87	2.54	2.59	2.55
In ₂ SeTe ₂	2.98	2.56	2.91	2.87
In_2TeS_2	3.04	2.76	2.61	2.57
In_2TeSe_2	3.06	2.75	2.74	2.70
In_2S_3	2.79	2.41	2.57	2.41
In ₂ Se ₃	2.91	2.55	2.71	2.68
In ₂ Te ₃	3.11	2.76	2.94	2.88

Table S1. The bonding length of In_2XY_2 and In_2X_3 monolayers

	Carrier		C_{2D}			
Direction	type	$E_1(eV)$	(N m ⁻¹)	m^*/m_0	$\mu(cm^2 V^{-1} s^{-1})$	t(ps)
Х	e	4.860	45.7	0.17	941.10	0.10
	h	6.110	45.7	1.61	6.60	0.01
У	e	3.910	45.4	0.17	1377.70	0.15
	h	5.110	45.4	1.75	8.00	0.01

Table S2. Calculated Effective Mass (m^*) , Elastic Modulid (C_{2D}) , Deformation Potentials (E_1) , and Carrier Mobility (μ) of In₂XY₂ monolayer along x and y directions