Supporting Information

Continuous production of stable chiral perovskite nanocrystals in spinning nanofibers to

exhibit circularly polarized luminescence

Zhi-Bin Liang, Xu Chen, Xiang-Ji Liao, Jing-Jing Li, Yue Yang, Cai-Feng Wang, * You-Xuan Zheng, * and Su Chen*

NO.	Chemical formula	PL	PLQY	Ref.
		[nm]	[%]	
1	CsPbBr ₃ /PMMA/TPU	524	39	32
2	MAPbBr ₃ /PAN	527	71	33
3	MAPbBr ₃ /PVA	525	72	34
4	MAPbBr ₃ /TPU	525	23.3	39
5	CsPbBr ₃ /PMMA	510	45	40
6	PS/FAPbBr ₃ /PMMA	540	82.3	41
7	MAPbBr ₃ /PAN	510	30.9	42
8	CsPbBr ₃ /PS	513	48	43
9	MAPbBr ₃ /PVDF/CEC	520	51	44
10	MAPbBr ₃ /PAN	529	88	This Work

Table S1. PL QY of *R*-PNCs/PAN nanofiber film in comparison with those prepared via other spinning methods

Table S2. Fluorescence and CPL data of *R*-PNCs/PAN nanofiber films prepared at different ligand ratios

Complex	<i>R</i> -MBABr:PbBr ₂ :MABr	PL	PLQY	τ	FWHMs	g _{lum}
Samples	[mol / mol / mol]	[nm]	[%]	[ns]	[nm]	
R-PNCs/PAN-0	0:1:1	526	7.37	78.95	27	/
R-PNCs/PAN-1	1:1:1	533	19.52	126.86	31	8.9×10 ⁻³
R-PNCs/PAN-2	2:1:1	529	60.18	166.69	25	3.2×10 ⁻³
R-PNCs/PAN-3	3:1:1	528	88.53	168.64	24	1.2×10 ⁻³
R-PNCs/PAN-4	4:1:1	527	42.64	98.19	26	3×10 ⁻³
R-PNCs/PAN-5	5:1:1	529	13.39	61.24	25	5×10 ⁻³

Chiral agent	Synthesis process	CPL & g _{lum}	Generation mechanism	Ref.
(<i>R</i>)-2-octylamine/ <i>R-,S</i> - MBA:Br	Ligand-controlled synthesis/postsynthetic ligand treatment	490-528 nm 6.8×10 ⁻²	Electron-hole wave functions	16
DGAm/N,N- bis(octadecyl)-I- Glutamic diamide (LGAm)	Tip sonication– coassembly	410-600 nm 7.3×10 ⁻³	Surface chiral distortion caused by chiral organic molecules	15
R/L-silica nanohelices	Spin-coating	517.5 nm 6×10 ⁻³	Dipolar interaction	13
Chiral helical polyacetylenes	Electrospinning	505 nm 3×10 ⁻²	Chiral helical polymers as handed- selective fluorescence filters	14
<i>R</i> -α-octylamine	Tip sonication- coassembly	520 nm 7×10 ⁻³	Surface chiral distortion caused by chiral organic molecules	17
<i>R-, S</i> -MBA:Br	Fiber-spinning chemistry	530 nm 8.9×10 ⁻³	Surface lattice distortion / short- range Coulomb interaction	This work

Table S3. Chiral agents, synthesis processes, CPL emission wavelengths, maximum g_{lum} , and optical chirality mechanisms of CPL-active materials containing PNCs

Fig. S1 (a) SEM image and (b) size distribution of *R*-PNCs/PAN nanofiber films.

Fig. S2 UV-Vis and fluorescence spectra of pure PAN nanofiber film, pristine *R*-PNCs solution obtained by LARP, and *R*-PNCs/PAN nanofiber films. The inset shows the photographs of a solution of LARP-derived pristine *R*-PNCs taken under daylight and UV light.

Fig. S3 PL decay of pristine *R*-PNCs obtained by LARP.

Fig. S4 Fluorescence spectra of *R*-PNCs/PAN nanofiber films obtained by adding different molar ratios of chiral *R*-MBABr.

Fig. S5 Transient fluorescence lifetime of *R*-PNCs/PAN nanofiber films obtained with different molar ratios of chiral *R*-MBABr.

Fig. S6 (a) CPL and (b) corresponding g_{lum} spectra of *R*-PNCs/PAN-1, -2, -3, -4, and -5 nanofiber films.