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Lattice mismatches and strains

The lattice mismatches () were calculated through
a,xn—a,

n=l—-

ay

where ay and a, represent the lattice constant of the freestanding monolayers and the
vdWHs, respectively, n represents the scaling factor from monolayer unit cells to
heterojunction supercells.

Furthermore, the strains (¢) induced by lattice mismatches can be calculated as

a,—ay*n

8 = D ———————
ay* n

The calculated lattice constants, lattice mismatches and strains are shown in the Table

S1.

Table S1. The calculated lattice constants and lattice mismatches of y-GeSe/BN, v-
GeSe/graphene, and y-GeSe/MoS, vdWHSs, and the strains of constituent layers in
vdWHs relative to their freestanding monolayers where negative (positive) values

represent compressive (tensile) strain.

v-GeSe BN v-GeSe  Graphene  y-GeSe MoS,

ay (A) 3.76 2.51 3.76 2.47 3.76 3.15
a, (A) 7.53 7.42 6.39

1 (%) 0.13% 0 1.35% 0.13% 1.92%  1.41%
& (%) +0.13% 0 -1.33%  +0.13%  —1.88% +1.43%
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Fig. S1 The band structures of y-GeSe (a), h-BN (b), and 2H-MoS, (c) monolayers by

HSEO06 functionals. The Fermi level is aligned to 0 eV.

Fig. S2 Total energies of y-GeSe/BN (a), y-GeSe/graphene (b), and y-GeSe/MoS,; (c)
vdWHs with different stacking order. The energy of y-GeSe/X vdWH (E,) discussed in

this work is set to 0 for reference.
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Fig. S3 Schematic of the structures (a) obtained by linearly shifting half the unit-cell
parameters along the [100] and [110] orientation, and the relative energies of the six
structures of y-GeSe/BN (b), y-GeSe/graphene (¢), and y-GeSe/MoS, vdWHs (d). The

total energy of configuration-1 is set to 0 as a reference.
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Fig. S4 Total energy evolution and 10 ps snapshots of y-GeSe/BN (a), y

from ab initio molecular dynamics calculations

and y-GeSe/MoS, (c) vdWHs

(b),

(AIMD).
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Fig. S5 Band structures of (a) y-GeSe and (d) h-BN monolayer supercell under the
strain equivalent to that in the y-GeSe/BN vdWH, band structures of (b) y-GeSe and (e)
graphene monolayer supercell under the strain equivalent to that in the y-
GeSe/graphene vdWH, and (c) y-GeSe and (f) MoS, monolayer supercell under the

strain equivalent to that in y-GeSe/MoS, vdWH.

Ideal type II Traditional type I1 Z-scheme

Fig. S6 Band alignment interface of ideal type II, traditional type I, and Z-scheme.
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Fig. S7 Top view of the optimized heterostructures of y-GeSe/graphene under different

strains.
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Fig. S8 Front view of the DCD isosurface for y-GeSe/graphene vdWH under different
strains with the isovalue of 1074 ¢/A3. The red arrows and numerical values indicate the

direction and amount of charge transfer, respectively.

Discussion on the 2L-GeSe/X vdWHs

The electronic properties of gamma-GeSe are very sensitive to the number of layers,
and the band gaps of 1L, 2L and 4L of y-GeSe are 0.60, 0.34, and 0.04 eV, respectively.
Herein, we conducted some calculations regarding the heterostructures of 2L y-GeSe
with the X layers. As shown in Table S2, the lattice constants and lattice mismatches of
the fully relaxed 2L-GeSe/X vdWHs are slightly different from those of 1L-GeSe/X
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vdWHs. The band structures in Fig. S9 show that the features in the band structures of
2L-GeSe and X layers are preserved, and the valence and conduction bands also show
a strong hybridization between 2L-GeSe and X layers, which are in line with the trend
in 1L-GeSe/X vdWHs. However, band alignments (Fig. S10) of 2L-GeSe/X vdWHs are
different from that in 1L-GeSe/X vdWHs due to the bandgaps change (i.e., change in
the relative positions of the valence and conduction bands) in the 2L-GeSe as well as
the strain effect. In 2L-GeSe/BN vdWH, the position of the CBM of GeSe relative to
BN remains unchanged (2.56 to 2.58 eV), while the VBM of GeSe is moved up, leaving
a AEy to 1.65 eV. Similarly, in 2L-GeSe/Graphene vdWH, the Fermi level is located
within the valence band of 2L-GeSe due to the upward shift of the VBM of GeSe,
forming a metal-semiconductor ohmic contact. In 2L-GeSe/MoS, vdWH, the strain
caused by the lattice mismatch makes the bandgap (1.42 eV) of MoS, smaller than that
in 1L-GeSe/MoS, vdWH (1.56 eV). The change in the bandgaps of 2L.-GeSe and MoS,
is manifested as an up-shift of the VBM of GeSe and a down-shift of the CBM of MoS,
in the 2L-GeSe/MoS, vdWH, finally forming a type-III band alignment. Therefore, the
trend of interlayer interaction in 2L-GeSe/X vdWHs are basically consistent with that

of 1L-GeSe/X vdWHs except for the bandgap and strain effects.

Table S2. The calculated lattice constants, lattice mismatches and strains of 2L-y-

GeSe/X vdWHs.

2L y-GeSe BN 2L y-GeSe  Graphene 2L y-GeSe  MoS,;

ay (A) 3.77 2.51 3.77 2.47 3.77 3.15
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ay (A) 7.53 7.44 6.43

n (%) 0.13% 0 1.34% 0.40% 1.55% 2.02%
+2.06
& (%) -0.13% 0 -1.33% +0.40% -1.53%
%
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Fig. S9 Band structures of 2L-y-GeSe/BN vdWH (a), and 2L-y-GeSe (d) and h-BN (g)

monolayer under the strain equivalent to that in the 2L-y-GeSe/BN vdWH; band
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structures of 2L-y-GeSe/graphene vdWH (b), and 2L-y-GeSe (e) and graphene (h)

monolayer under the strain equivalent to that in the 2L-y-GeSe/graphene vdWH; band
structures of 2L-y-GeSe/MoS, vdWH (b), and 2L-y-GeSe (f) and MoS, (i) monolayer

under the strain equivalent to that in 2L-y-GeSe/MoS, vdWH.
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Fig. S10 The band alignment diagrams of 2L-y-GeSe/BN, 2L-y-GeSe/graphene and

2L-y-GeSe/MoS,; vdWHs.
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