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Experimental Section

General information

'H NMR and '3 C NMR spectra were recorded on Bruker AV 500 NMR spectrometer at room
temperature using CDCl;, DMSO-ds as solvent, and referenced externally to SiMe,. The
multiplicities of the signals are indicated as “s”, “d”, “r” or “m”, which stand for singlet,
doublet, triplet, and multiplet, respectively. High-resolution mass spectra (HRMS) were
collected on a Bruker maxis UHR-TOF mass spectrometer in an APCI positive mode.
Thermogravimetric analysis (TGA) was undertaken using a PerkinElmer Instruments (Pyris1
TGA) at a heating rate of 10 °C/ min from 30 to 800 °C under a nitrogen environment. The
thermal decomposition temperatures (73) were determined by the recorded temperature at 5%
weight loss. Differential scanning calorimetry (DSC) measurement was performed on DSC
Q200 (TA instrument) with a heating rate of 10 °C min! from 25 to 450 °C under nitrogen.
The glass transition temperature (7) was determined from the second heating scan. Cyclic
voltammetry (CV) measurements were carried out on a CHI600 electrochemical analyzer
(Chenhua, China) at room temperature, with a conventional three-electrode system consisting
of a glassy carbon working electrode, a platinum wire auxiliary electrode, and an Ag/AgCl
standard electrode was used as the reference electrode. The supporting electrolyte was 0.1 M
tetrabutylammonium hexafluorophosphate (n-BusNPF4) in anhydrous dichloromethane
solution, and ferrocene was added as an internal standard in the whole measurement. UV-Vis
spectra in solution were recorded on a UV-3100 spectrophotometer at room temperature.
Room-temperature photoluminescence spectra and phosphorescence spectra were measured
on a Hitachi F-7000 fluorescence spectrophotometer with xenon lamp as the light source. The
absolute fluorescence quantum yields (PLQY) were measured on a Quantaurus-QY
measurement system (C9920-02, Hamamatsu Photonics) equipped with a calibrated
integrating sphere. During the PLQY measurements, the integrating sphere was purged with
pure and dry argon to maintain an inert environment. The lifetimes of fluorescence and

delayed fluorescence were performed on PicoQuant Fluotime300.

Theoretical Calculations Method.

Density functional theory (DFT) calculations of the geometrical and electronic properties of
the two emitters at ground-states or singlet states were performed based on the B3LYP/def2-
SVP level including Grimme’s dispersion correction, using Gaussian 16 software package.
Time-dependent DFT (TD-DFT) calculations with PBEO functional and def2-SVP basis set

were then performed to further study the properties of excited states. All calculations were
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performed in the gas phase, and visualized using GaussView 6.0. The calculation of root-
mean-square deviations (RMSDs) between the optimized conformation of ground states and

corresponding singlet states were analysed by VMD 1.9.3 program.

Analysis of Rate Constants:
The rate constants of radiative decay (k) and nonradiative decay (k,,.,) from S; to S, states,
the rate constants of intersystem crossing (k;sc) and reverse intersystem crossing (kg;sc) were

calculated from the following six equations:

k,=1/t, (1)

ky=1/14 W
kes = @oky + Daky = Dok, 3)
s =[(1-®p1) / Pl K (a)
Kisc= ko — kis = Kurs (5)
kisc = (koka®a)/ (Kisc®y) (6)

Where tp and 7d represent the prompt and decay fluorescence lifetime, which determined
from transient PL spectra. The kp and kd represent the decay rate constants for prompt and
delayed fluorescence, respectively. @p and @d indicate prompt and delayed fluorescence
components and can be distinguished from the total @PL by comparing the integrated

intensities of prompt and delayed components in the transient PL spectra.

Synthesis of Materials.

All reagents and chemicals (at least analytical grade) were purchased from commercial
sources and used without further purification. Solvents were all dried and degassed using the
Grubbs-type solvent purification system. The key intermediate of DP-TAT (Scheme S1) was
prepared according to the previously literatures.l'?l. Schlenk technology was strictly
performed under argon conditions in all reactions. Air- and moisture-sensitive liquids and
solutions were transferred via syringes. The final products were firstly purified by column

chromatography, and then further refined by temperature-gradient vacuum sublimation.
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Scheme S1. Synthesis routes of the two red/deep-red TADF emitters.

General procedure for the synthesis of DPPQ-TAT.

The mixture of DP-TAT (leq, 2 mmol, 0.99g), 3-Bromo-9,10-phenanthrenedione (1.5 eq, 3
mmol, 0.86g), Pd,(dba); (5 %, 0.1 mmol, 0.092 g), RuPhos (10 %, 0.2 mmol, 0.093 g) and
Cs,COs3 (2 eq, 4 mmol, 1.3 g) was dissolved in a mixed solvent composed of dry toluene (40
ml). The reaction mixture was allowed to stir at 110 °C for 24 h under Ar. Then the reaction
mixture was cooled at room temperature and filtered through Celite. Filtrate was concentrated
under reduced pressure, the residue was dissolved in CH,Cl, (40 mL x 3), washed with water
and dried over Na,SO,4. Combined organic layers were evaporated under reduced pressure,
and the residue was purified by column chromatography on silica [DCM/Hex = (1/1) ~DCM]
to provide pure DPPQ-TAT.

General procedure for the synthesis of TAT-PP and TAT-PQ.

Under argon atmosphere, to a 50 mL round-bottom flask equipped with magnetic stirring bar
and reflux condenser, DPPQ-TAT (leq, 2 mmol, 1.4 g), corresponding diamino compound
(2,3-diaminomaleonitrile, 4,5-diaminophthalonitrile) (1.1 eq, 2.2 mmol) and acetic acid
glacial (20 mL) were added. The mixture was stirred at 120 °C for 24 h, then cooled down to
room temperature. Then, the mixture was poured into the water and extracted with DCM (20
mL X 3). The combined organic layers were dried over Na,SO4 and concentrated under
reduced pressure. and the deep red solid was collected by filtration. Column chromatography

on silica [DCM/Hex = (1/1) ~DCM] to provide pure TAT-PP, TAT-PQ.



NMR Data:

5,10-Diphenyl-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c|carbazole (DP-TAT)

Yield: 53% (1.8 g). White solid. '"H NMR (500 MHz, DMSO-dg) 6 12.01
(s, 1H), 8.88 (d, J=7.7 Hz, 1H), 7.88 — 7.57 (m, 11H), 7.49 (ddd, J = 7.9,
6.5, 1.7 Hz, 1H), 7.42 (qd, J = 8.1, 1.4 Hz, 2H), 7.29 — 7.16 (m, 2H), 7.16
—7.10 (m, 1H), 6.72 (ddd, J= 8.1, 6.8, 1.2 Hz, 1H), 6.66 (ddd, J= 8.2, 7.0,
1.1 Hz, 1H), 5.97 (d, J= 8.1 Hz, 1H), 5.78 (s, 1H). [1-2]

3-(10,15-Diphenyl-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazol-5-yl)phenanthrene-
9,10-dione (DPPQ-TAT):

Yield: 75% (1.05 g). Dark-purple solid. '"H NMR (500 MHz,
DMSO-d) & 8.84 (d, J = 2.0 Hz, 1H), 8.42 — 8.37 (m, 1H),
8.25(d,J=8.2 Hz, 1H), 8.12 (dd, /=7.8, 1.5 Hz, 1H), 7.79 —
7.68 (m, 11H), 7.64 (dd, J=8.2, 1.9 Hz, 1H), 7.57 (td, J= 7.6,
1.0 Hz, 1H), 7.50 (d, /= 8.2 Hz, 1H), 7.29 (t, J=7.7 Hz, 2H),
7.26 —7.16 (m, 3H), 6.87 (ddd, J= 8.2, 7.0, 1.1 Hz, 1H), 6.77
(dddd, J=16.5, 8.2, 7.0, 1.1 Hz, 2H), 6.49 (d, J = 8.1 Hz, 1H), 6.06 — 5.98 (m, 2H). 13C NMR
(126 MHz, DMSO-d;) 6 178.19, 146.14, 141.30, 140.63, 140.05, 137.43, 137.13, 136.92,
136.39, 135.48, 131.70, 131.40, 130.49, 130.30, 129.94, 129.24, 128.72, 128.57, 128.43,
125.23, 123.85, 123.76, 123.73, 123.69, 122.07, 121.43, 120.69, 120.58, 120.15, 110.15,
110.05, 109.98, 104.49, 104.35, 104.01. HRMS (APCI) m/z calcd for. CsoHpoN30, [M+H]*
704.2333, found 704.2333. Elemental analysis (%) calcd for CsoHy9N3;O,: C 85.33, H 4.15, N
5.97; found: C 84.75, H 4.39, N 5.63.

7-(10,15-Diphenyl-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazol-5-
ylhdibenzo|f,h]quinoxaline-2,3-dicarbonitrile (TAT-PP):

Yield: 52 % (0.81 g). Dark-red solid. 'H NMR (500 MHz,
Chloroform-d) 6 9.29 (d, J = 8.5 Hz, 1H), 9.04 (dd, J =
8.1, 1.4 Hz, 1H), 8.88 (d, J=2.0 Hz, 1H), 8.42 (d, J=8.2
Hz, 1H), 7.98 (dd, J = 8.7, 1.9 Hz, 1H), 7.80 — 7.76 (m,
1H), 7.68 (dtd, J = 13.5, 6.0, 4.0 Hz, 11H), 7.59 (d, J =
8.2 Hz, 1H), 7.36 (d, J = 8.2 Hz, 1H), 7.26 (d, J = 6.4 Hz,
1H), 7.24 —7.19 (m, 2H), 6.96 (t, /= 7.6 Hz, 1H), 6.85 (t, /= 7.6 Hz, 1H), 6.80 (t, J = 7.6 Hz,
1H), 6.39 (t, J = 7.6 Hz, 1H), 6.15 — 6.05 (m, 3H). *C NMR (126 MHz, Chloroform-d) &
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145.10, 142.85, 142.28, 141.82, 141.27, 140.85, 140.71, 136.91, 134.65, 132.87, 132.58,
130.33, 130.18, 129.43, 129.10, 129.06, 128.55, 127.74, 127.12, 126.06, 123.75, 123.68,
123.53, 123.49, 123.37, 123.09, 122.81, 122.31, 122.03, 122.00, 121.87, 121.18, 120.34,
119.99, 113.83, 110.21, 110.12, 109.65, 105.50. HRMS (APCI) m/z calcd for. CssHyoN;
[M+H]" 776.2558, found 776.2556. Elemental analysis (%) calcd for Cs4sHyoN7: C 83.60, H
3.77, N 12.64; found: C 84.29, H 3.98, N 12.67.

3-(10,15-Diphenyl-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazol-5-
ylhdibenzo|a,c]phenazine-11,12-dicarbonitrile (TAT-PQ):

Yield: 54 % (0.89 g). Dark-green solid. 'H NMR (500
MHz, Chloroform-d) 6 9.44 (d, J = 8.4 Hz, 1H), 9.23
(dd, /= 8.0, 1.5 Hz, 1H), 8.85 (d, J = 2.0 Hz, 1H), 8.60
(d, J=13.8 Hz, 2H), 8.40 (d, /= 8.1 Hz, 1H), 7.93 (dd,
J=28.5,19 Hz, 1H), 7.79 — 7.75 (m, 1H), 7.74 — 7.63
(m, 11H), 7.59 (d, J= 8.2 Hz, 1H), 7.34 (d, /= 8.2 Hz,
1H), 7.24 — 7.17 (m, 3H), 6.91 (t, J = 7.6 Hz, 1H), 6.83 (t, J = 7.6 Hz, 1H), 6.81 — 6.76 (m,
1H), 6.43 (t, J= 7.7 Hz, 1H), 6.26 (d, J = 8.2 Hz, 1H), 6.09 (d, J = 8.2 Hz, 1H), 6.04 (d, J =
8.1 Hz, 1H). 3C NMR (126 MHz, Chloroform-d) & 145.80, 145.25, 144.78, 141.99, 141.99,
141.81, 141.79, 141.39, 140.78, 137.77, 137.52, 137.25, 137.20, 137.04, 132.58, 132.46,
130.18, 129.42, 129.32, 129.25, 129.10, 129.03, 128.55, 128.33, 127.89, 127.34, 123.72,
123.66, 123.33, 123.05, 122.76, 122.41, 122.14, 122.13, 121.03, 120.35, 120.12, 115.34,
115.33,113.41, 113.41, 113.37, 110.16, 110.09, 109.77, 105.36. HRMS (APCI) m/z calcd for.
CsgH31N; [M+H]" 826.2714, found 826.2718. Elemental analysis (%) calcd for CsgH31N7: C
84.35, H 3.78, N 11.87; found: C 84.63, H 3.97, N 11.68.
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NMR and HRMS
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Fig. S1. '"H NMR of DP-TAT in DMSO-d.
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Fig. S2. '"H NMR of DPPQ-TAT in DMSO-d.
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Acquisition Parameter

Source Type APCI len Polarity Positive Set Nebulizer 1.6 Bar
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Fig. S4. HRMS (APCI) of DPPQ-TAT in MeOH.
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Fig. S5. 'H NMR of TAT-PP in CDCl;.
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Fig. S7. HRMS (APCI) of TAT-PP in MeOH.
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Fig. S10. HRMS (APCI) of TAT-PQ in MeOH.
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Identification code
Empirical formula
CCDC No.
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A

a/°

B/

v/°

Volume/A3

Z

pcalcg/ Cl’l’l3

wmm-!

F(000)

Crystal size/mm?
Radiation

Table S1, Crystal data for TAT-PP.

20 range for data collection/°

Index ranges

Reflections collected
Independent reflections

Data/restraints/parameters

Goodness-of-fit on F2

Final R indexes [[>=2c (1)]
Final R indexes [all data]
Largest diff. peak/hole / e A

15

47-0m-sq

CseH33CL4N5

2123959

945.69

170.0

triclinic

P-1

13.809(4)

18.949(5)

19.274(5)

100.295(8)

101.906(9)

102.245(8)

4690(2)

4

1.339

0.300

1944.0

0.16 x0.12 x 0.11

MoKa (A =0.71073)

3.866 to 53.008
-17<h<17,-23<k<22,-24<1<23
53639

19020 [Ri = 0.0939, Ryigma = 0.1155]
19020/0/1207

1.038

R; =0.0805, wR, =0.2005
R; =0.1579, wR, = 0.2498
1.05/-0.95
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Fig. S11. The TGA and DSC curves of TAT-PP and TAT-PQ.
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Fig. S12. Cyclic voltammetry analysis of TAT-PP and TAT-PQ.
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Fig. S13. UV-vis absorption and photoluminescence (PL) spectra of the TAT-PP and TAT-
PQ in neat films, obviously deep-red/NIR emission peaks of 634 and 721 nm can be observed
on TAT-PP and TAT-PQ.

100-
3\ Neat film
B and —o—TAT-PP
c10 ——TAT-PQ
g
c
- -2
=10
Q
N
T 10
=
[
(]
< 104

Time / us

Fig. S14. Transient PL decay curves of TAT-PP and TAT-PQ in neat film under argon

atmosphere, two films exhibited a second-order exponential PL decays.
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used to determine the S; and 7; energy level, 2.43/2.42 eV for TAT-PP and 2.30/2.28 eV for
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Fig. S17. TAT-PP and TAT-PQ exhibited increase of doping concentrations from 1 to 10%,
red-shifted EL spectra were recorded for all three emitters by strong intermolecular
interaction. Among them, high concentration doping (20%) was tested for TAT-PQ, and the

maximum emission peak position of the EL spectrum was at 678nm.
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Fig. S18. TAT-PP and TAT-PQ emitters exhibited maximum EQE values at a low doping

concentration of 1 wt.%, and further increase of doping concentrations from 1 to 10 %

decreased the maximum EQE values, due to the concentration quenching effect.
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Fig. S19. The EL spectra of device a) A, b) B and c¢) C under different driving voltages,

respectively.
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Fig. S20. Chemical structures of the used materials.
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