Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting information

Highly conductive hydrogel sensor driven by amylose with freezing and dehydration resistance

Yiyan Gao, Yang Gao, Zhixin Zhang, Yuanrui Wang, Xiuyan Ren, Fei Jia *,

Guanghui Gao *

Polymeric and Soft Materials Laboratory, School of Chemical Engineering, Advanced

Institute of Materials Science, Changchun University of Technology, Changchun,

130012, P. R. China

E-mail: jiafei@ccut.edu.cn; ghgao@ccut.edu.cn

Hydrogels	PVA	NaCl	Amylose	Glycerol	Deionized	water contents
	(g)	(g)	(g)	(mL)	water (mL)	(%)
PVA-NaCl	6.5	2	0	0	40	100%
PVA-NaCl-GL	6.5	2	0	12	28	70%
PVA-NaCl-GL-AMY-1%	6.5	2	0.4	12	28	70%
PVA-NaCl-GL-AMY-2%	6.5	2	0.8	12	28	70%
PVA-NaCl-GL-AMY-3%	6.5	2	1.2	12	28	70%
PVA-NaCl-AMY	6.5	2	1.2	0	40	100%
PVA-NaCl-GL-15%-AMY	6.5	2	1.2	6	34	85%
PVA-NaCl-GL-30%-AMY	6.5	2	1.2	12	28	70%

TableS1. Recipes of all hydrogel samples

Hydrogel	Stress	Strain	Sensitivity	Anti-drying	Anti- freezing	Referenc
	(kPa)	(%)	(GF)	(%)	(°C)	es
MCT-fabric	-	210	9022	-	-	42
AgNW/CNF hybrid nanopaper	68700	1.87	0.24	-	-	43
PINF/MXene composite aerogel.	85.21	90	1.67	-	-50	44
superhydrophobic conductive MXene/paper	-	-	17.4	superhydrophobic	-	45
Amy/(PAAm-AAc) hydrogels	100	1100	6.93	-	-	46
HPMC-g-AN/ AM0.6-ZnCl2–25% hydrogel	160	1730		-	-	47
Gel-C5 hydrogel	41	436	5.9	-	-	48
PVA-NaCl-GL-AMY hydrogel	1377	706	2.55	85	-20	This work

Table S2. Comparison of the hydrogel with the other hydrogels in the available literature

Figure S1. a) Tensile curves of hydrogel with diverse amylose contents; b) the influence of amylose contents on the elastic modulus and toughness for hydrogels.

Figure S2. a) Tensile curves of hydrogel with diverse glycerol contents; b) the influence

of glycerol contents on the elastic modulus and toughness for hydrogels.

Figure S3. a) Loading–unloading curves of PVA-NaCl-GL-AMY hydrogel; b) the influence of amylose contents on the dissipated energy and maximum stress for hydrogels.

Figure S4. Different tensile strain on the dissipated energy and maximum stress for hydrogels.

Figure S5. a) The rheological of the PVA-NaCl-GL-AMY hydrogel at diverse strains;b) the rheological of the PVA-NaCl-GL-AMY hydrogel with various frequency.

Figure S6. The 3 × 3 array sensor of PVA-NaCl-GL-AMY hydrogel.