Supporting Information

Enhanced photodetection and a wider spectral range in In_2S_3 -ZnO 2D-3D heterojunction: Combined optical absorption and enhanced carrier separation at the type-II heterojunction

Narinder Kaur¹, Abhishek Ghosh¹, Prashant Bisht¹, Arvind Kumar¹, Vishakha Kaushik¹, Nisha Kodan¹, Rajendra Singh¹, and B.R. Mehta^{1,2*}

1 Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India)

2 Directorate of Research, Innovation, and Development, Jaypee Institute of Information technology, Noida (U.P.), 201309, India

Author to whom correspondence to be addressed* Email: <u>brmehta@physics.iitd.ac.in</u>

Figure S1 (a) EDX for ZnO, (b) EDX for In_2S_3 with cross-sectional image of In_2S_3 in the inset, (c) EDX for the In_2S_3/ZnO heterojunction (d) cross-sectional image of the heterojunction showing

The chemical composition of the samples is analyzed by EDX spectra which show the presence of Zn and O in the ZnO thin films with In and S elements present non continuously in the 2D- In_2S_3 and continuous presence of Zn, O, In, and S in the In_2S_3 -ZnO heterojunction sample.

Figure S2(a) Survey spectra for the pristine In_2S_3 , ZnO and In_2S_3 -ZnO heterojunction sample, show the presence of In, S, Zn and O over the entire sample, these results are consistent with EDX spectra. (b) and (c) the deconvoluted spectra for sulfur present in both pristine In_2S_3 and the In_2S_3 -ZnO heterojunction (d) and (e) the deconvoluted spectra for oxygen in both ZnO and the heterojunction In_2S_3 -ZnO.

Figure S3 (a) and (b) have shown AFM potential images for the In_2S_3 and the In_2S_3 -ZnO heterojunction with the thickness of nanoflakes around 30 nm for pristine In2S3 and 50 Nm for the In_2S_3 -ZnO heterojunction. The work function value is 4.75 eV for the In_2S_3 and 4.3 eV

for the heterojunction which implies that both behave differently in the photoresponse.

For pristine ZnO, photocurrent values are of the order of 7×10^{-7} A and dark current 3.9×10^{-7} A. For In₂S₃, the current is the order of 4×10^{-5} A and dark current 1.4×10^{-5} A at +1 V, while in the In₂S₃-ZnO heterojunction sample, the current in light is of the order of 0.28×10^{-3} A which is 10^4 and 10^2 times higher than pristine ZnO and In₂S₃ respectively.

Figure S4 shows I-V characteristics (current density variation with voltage) under dark and white light illumination for In_2S_3 -ZnO heterojunction, pristine In_2S_3 , and ZnO thin film samples.

Figure S5 (a) ZnO thin films of the thickness of 100 nm exhibit a high response of 3.2×10^{-4} mAcm⁻² at wavelength 300 nm in the UV region and a minimal 2.5×10^{-5} mAcm⁻² response for the visible wavelength range 400-700 nm, because of its wide bandgap (3.2 eV) value. (b) Nanoflakes of In₂S₃ show photoresponse in the visible region of 400-800 nm, which includes a maximum current of 0.05 mAcm⁻² for the 550 nm wavelength close to the bandgap (2.2 eV) of In₂S₃ and a current of 0.02 mAcm⁻² for wavelength 800 nm. (c) In₂S₃-ZnO heterojunction exhibits higher photoresponse and current density within the entire UV-Visible wavelength range of 300-800 nm with a maximum photocurrent value of 0.3 mAcm⁻² at the wavelength 450 nm. The measurements also revealed that the heterojunction shows more photocurrent than the ZnO and In₂S₃ samples for the entire UV-Vis range.

References

 Yu Zhao, Daizhe Yu, Jianting Lu, Li Tao, Zefeng Chen, Yibin Yang, Aixiang Wei, Lili Tao, Jun Liu, Zhaoqiang Zheng, Mingming Hao, and Jian-Bin Xu, "Thickness-Dependent Optical Properties and In-Plane Anisotropic Raman Response of the 2D β-In₂S₃, Adv.Optical Mater. 2019, 7, 1901085.

- Narinder Kaur, Dipika Sharma, B.R. Mehta, "Growth of In₂S₃ nanolayers on F-Mica, SiO₂, ZnO, and TiO₂ substrates using chemical vapor deposition" Materials Science & Engineering B 264 (2021) 114889.
- Di Wu, Yuange Wang, Longhui Zeng, Cheng Jia, Enping Wu, Tingting Xu, Zhifeng Shi, Yongtao Tian, Xinjian Li, and Yuen Hong Tsang, "Design of 2D Layered PtSe2 Heterojunction for the High-Performance, Room-Temperature, Broadband, Infrared Photodetector", ACS Photonics 2018 5 (9), 3820-3827 DOI: 10.1021/acsphotonics.8b00853.
- Jongtae Ahn, Ji-Hoon Kyhm, Hee Kyoung Kang, Namhee Kwon, Hong-Kyu Kim, Soohyung Park, and Do Kyung Hwang, "2D MoTe2/ReS2 van der Waals Heterostructure for High-Performance and Linear Polarization-Sensitive Photodetector", ACS Photonics 2021 8 (9), 2650-2658 DOI: 10.1021/acsphotonics.1c00598.
- Xinglin Wen, Sijie Chen, Jiaxin Zhao, Wei Du, and Weijie Zhao, "Enhanced Plasmonic Hot-Carrier Transfer in Au/WS2 Heterojunctions under Nonequilibrium Condition", ACS Photonics Article ASAP DOI: 10.1021/acsphotonics.1c01938.