Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Single band ratiometric luminescence thermometry based on Pr³⁺

doped oxides containing charge transfer states

Jiawen Wang, ab Junyi Li, b Ruoshan Lei, *b Shilong Zhao b and Shiqing Xu *b

^a College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, China

^b Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018,

China

Fig. S1. Diffuse reflectance spectrum of the Pr³⁺: GZT phosphor.

Supplementary Note 1. The calculation of IVCT energy. According to previous studies, the position of the IVCT band will affect the electron distribution between the ${}^{3}P_{0}$ and ${}^{1}D_{2}$ energy levels. Boutinaud et al. have proposed an empirical equation to evaluate the energy of $Pr^{3+}-Ti^{4+}$ IVCT as follows:^{1,2}

$$IVCT(cm^{-1}) = 58800 - 49800 \left[\frac{\chi(Ti^{4+})}{d(\Pr^{3+} - Ti^{4+})} \right]$$
(S1)

where $\chi(Ti^{4+})$ is the optical electronegativity of Ti⁴⁺ (2.05), and $d(Pr^{3+}-Ti^{4+})$ is the average distance between Pr^{3+} and Ti⁴⁺. For Pr^{3+} : GZT, the mean distance between Gd^{3+} -Ti⁴⁺ is ~3.37 Å based on the crystal structure data (ICSD-251934).³ Accordingly, the calculated IVCT energy is ~351 nm (28520 cm⁻¹), which is consistent with the experimental data detected in the excitation spectrum (340 nm, 29412 cm⁻¹).

Fig. S2. (a) Experimentally measured and fitted plot of $LIR=I_{617}/I_{491}$ versus temperature. (b) The corresponding S_a

and S_r as a function of temperature.

Fig. S3. Absolute error (ΔT) as a function of temperature for $LIR_{_{3P_0 \rightarrow ^{3}H_4}}(I_{EX:f-f}/I_{EX:IVCT})$ data.

Fig. S4. Schematic diagram of the present SBR method in Pr³⁺: GZT.

Fig. S5. (a) XRD patterns of Gd₂MgTiO₆ and Pr³⁺: Gd₂MgTiO₆ samples. Due to the lack of structural information of Gd₂MgTiO₆ in the crystal database, the standard data of Dy₂MgTiO₆ with an analogous structure (mp-1213085) is used as a reference. (b) XRD patterns of LiLaMgWO₆ and Pr³⁺: LiLaMgWO₆ samples, and the standard data of LiLaMgWO₆ (PDF-370243) is used as a reference. (c) XRD patterns of La₂ZnTiO₆ and Pr³⁺: La₂ZnTiO₆ samples with the standard data of La₂ZnTiO₆ (ICSD-172755) as a reference.

Fig. S6. (a) Temperature-dependent PL spectra of Pr^{3+} : Gd_2MgTiO_6 upon the excitations of $Pr^{3+}-Ti^{4+}$ IVCT (λ_{ex} =329 nm) and Pr^{3+} : ${}^{3}H_4 \rightarrow {}^{3}P_2$ transition (λ_{ex} =451 nm). (b) Temperature-variational intensities of the 491 nm emission (Pr^{3+} : ${}^{3}P_0 \rightarrow {}^{3}H_4$ transition) under two different excitation lines (λ_{ex} =329 and 451 nm).

Fig. S7. (a) Temperature-dependent PL spectra of Pr^{3+} : LiLaMgWO₆ upon the excitations of $Pr^{3+}-W^{6+}$ IVCT (λ_{ex} =322 nm) and Pr^{3+} : ${}^{3}H_{4}\rightarrow {}^{3}P_{2}$ transition (λ_{ex} =449 nm). (b) Temperature-variational intensities of the 491 nm emission (Pr^{3+} : ${}^{3}P_{0}\rightarrow {}^{3}H_{4}$ transition) under two different excitation lines (λ_{ex} =322 and 449 nm).

Fig. S8. (a) Temperature-dependent PL spectra of Pr^{3+} : La₂ZnTiO₆ upon the excitations of the Pr^{3+} -Ti⁴⁺ IVCT state (λ_{ex} =321 nm) and Pr^{3+} : ${}^{3}H_{4} \rightarrow {}^{3}P_{2}$ transition (λ_{ex} =449 nm). (b) Temperature-variational intensities of the 489 nm emission (Pr^{3+} : ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$ transition) under two different excitation lines (λ_{ex} =321 and 449 nm).

References

- Y. Gao, F. Huang, H. Lin, J. Xu and Y. Wang, Sens. Actuators B Chem., 2017, 243, 137-143.
- 2 R. Shi, L. Lin, P. Dorenbos and H. Liang, J. Mater. Chem. C, 2017, 5, 10737-10745.
- 3 N. Das, M. A. Nath, G. S. Thakur, M. Thirumal and A. K. Ganguli, J. Solid State Chem., 2015, 229, 97-102.