Supporting Information for

Bidentate-anionic-group strategy for enhancing electron-phonon coupling and vibronic fluorescence in rare-earth crystals

Jingcheng Feng, a,c Fangyan Wang, ${ }^{\text {b }}$ Wang Liu, ${ }^{\text {a,c }}$ Fei Liang, ${ }^{\text {b,* }}$ Guochun Zhang, ${ }^{\text {a,c,* }}$ Haohai Y u, ${ }^{\text {b }}$ and Huaijin Zhang ${ }^{\text {b }}$
${ }^{a}$ Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
${ }^{b}$ State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100,
P. R. China
${ }^{c}$ Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
* Emails: liangfei@sdu.edu.cn (F. Liang) and gczhang@mail.ipc.ac.cn (G. C. Zhang)

1. Experimental Methods

1.1 Crystal growth

$\mathrm{K}_{3} \mathrm{RE}\left(\mathrm{BO}_{3}\right)_{2}$ ($\mathrm{RE}=\mathrm{Pr}, \mathrm{Nd}$, and Gd) single crystals were grown by means of spontaneous crystallization from self-flux system. Specifically, the molar ratios of $\mathrm{Gd}_{2} \mathrm{O}_{3}$ (or $\mathrm{Nd}_{2} \mathrm{O}_{3}$): $\mathrm{K}_{2} \mathrm{CO}_{3}: \mathrm{H}_{3} \mathrm{BO}_{3}=3: 40: 150$ and $\operatorname{Pr}_{6} \mathrm{O}_{11}: \mathrm{K}_{2} \mathrm{CO}_{3}: \mathrm{H}_{3} \mathrm{BO}_{3}=1: 40: 150$ were employed. The mixture of reagents with high purity was ground thoroughly and put into a platinum crucible with a diameter of 20 mm and a height of 20 mm . The crucible was placed into a vertical programmable temperature furnace. The temperature was raised up to $970{ }^{\circ} \mathrm{C}$ and kept for 200 minutes to ensure that the mixture was completely melted and homogeneously mixed, then cooled to $700{ }^{\circ} \mathrm{C}$ at a rate of $2{ }^{\circ} \mathrm{C} / \mathrm{h}$, and finally cooled to $25^{\circ} \mathrm{C}$ at a rate of $30^{\circ} \mathrm{C} / \mathrm{h}$. The asgrown transparent crystals were mechanically separated from the platinum crucible for the following measurements of structure and properties.

1.2 Solid state synthesis

1.2.1 $K_{3} R E\left(B O_{3}\right)_{2}(R E=P r, N d$, and $G d)$

Polycrystalline samples were synthesized through high temperature solid state reaction. The mixture of $\mathrm{Gd}_{2} \mathrm{O}_{3}\left(\right.$ or $\left.\mathrm{Nd}_{2} \mathrm{O}_{3}\right), \mathrm{K}_{2} \mathrm{CO}_{3}$, and $\mathrm{H}_{3} \mathrm{BO}_{3}$ with molar ratio of 1:3:6 as well as $\mathrm{Pr}_{6} \mathrm{O}_{11}$, $\mathrm{K}_{2} \mathrm{CO}_{3}$, and $\mathrm{H}_{3} \mathrm{BO}_{3}$ with molar ratio of $1 / 3: 3: 6$ were ground thoroughly, put into a platinum crucible, and then compressed tightly. Next, the crucible was placed into a programmable temperature furnace. Finally, the mixture was heated to $650^{\circ} \mathrm{C}$ within 24 hours, kept at this temperature for 48 hours, and then cooled to room temperature within 2 days. Took out the polycrystalline sample and ground it, and repeated the above steps at $850^{\circ} \mathrm{C}$ to ensure a more thorough reaction.

1.2.2 $\mathrm{Li}_{3} \mathrm{~K}_{9} \mathrm{Gd}_{3}\left(\mathrm{BO}_{3}\right)_{7}$

The raw materials of synthesizing $\mathrm{Li}_{3} \mathrm{~K}_{9} \mathrm{Gd}_{3}\left(\mathrm{BO}_{3}\right)_{7}$ polycrystalline samples are $\mathrm{Li}_{2} \mathrm{CO}_{3}$, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Gd}_{2} \mathrm{O}_{3}$, and $\mathrm{H}_{3} \mathrm{BO}_{3}$ with molar ratio of 3: 9: 3: 14. The detailed experimental method was the same as that in "1.2.1 $K_{3} R E\left(B O_{3}\right)_{2}(R E=P r, N d$, and $G d)$ ".

1.2.3 $\mathrm{K}_{3} G d\left(\mathrm{PO}_{4}\right)_{2}$

The mixture of $\mathrm{Gd}_{2} \mathrm{O}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, and $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ with molar ratio of 1:3:4 were ground thoroughly, put into a platinum crucible, and then compressed tightly. The mixture was heated at $300{ }^{\circ} \mathrm{C}$ for 5 hours, then cooled to room temperature, and finally heated at $1000{ }^{\circ} \mathrm{C}$ for 24 hours.

1.2.4 $\mathrm{KGd}\left(\mathrm{PO}_{3}\right)_{4}$

The mixture of $\mathrm{Gd}_{2} \mathrm{O}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ with molar ratio of 1: 1:8 were ground thoroughly, put into a platinum crucible, and then compressed tightly. The mixture was heated at $400^{\circ} \mathrm{C}$ for 2 days, then cooled to room temperature, and finally heated at $600^{\circ} \mathrm{C}$ for 10 hours.

1.3 Single crystal X-ray crystallography

Single Crystal X-ray diffraction data were collected using a Bruker D8 Quest diffractometer (Mo K $\alpha, \lambda=0.71073 \AA$). Indexing and data integration were performed using APEX3 (Difference Vectors method). Absorption correction was performed by the multiscan method implemented in SADABS. ${ }^{[51]}$ Space groups were determined using XPREP implemented in APEX3. Structures were solved using SHELXL-2014 (direct methods) and refined using SHELXL-2014 (full-matrix least-squares on F^{2}) with anisotropic displacement contained in APEX3 program packages. Hydrogen atoms on carbon and nitrogen were calculated in ideal positions with isotropic placement parameters set to $1.2 \times U_{\text {eq }}$ of the attached atoms. ${ }^{[S 2]}$

1.4 Powder X-ray diffraction

X-ray diffraction patterns were obtained on a Bruker D8 focus X-ray diffractometer equipped with a diffracted beam monochromator set for $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.5418 \AA$) at room temperature. A scan step width of 0.02° and a fixed counting time of $0.2 \mathrm{~s} /$ step were applied to record the patterns in the 2θ range of $5-70^{\circ}$.

1.5 Emission spectra measurements

The fluorescence spectra of Gd-containing crystals were collected by a FLS920 Edinburgh fluorescence spectrometer. The Xenon lamp light of 274-290 nm was used as the incident source. The spectral lines were collected with five repeats.

1.6 UV-vis-NIR diffuse reflectance spectrum

UV-vis-NIR diffuse reflectance data were collected on a Cary 7000 spectrophotometer in the spectral range of 200-2500 nm at room temperature. Fluoroethylene was used as a standard.

1.7 Raman spectroscopy

The Raman spectrum was collected in the range of $50-4000 \mathrm{~cm}^{-1}$ using the InVia Reflex Raman spectrometer with a 532 nm laser excitation. Several transparent single crystals with regular shape and flat surface were prepared in advance.

1.8 Phonon calculations

The atomic-level theoretical calculations for $\mathrm{K}_{3} \mathrm{Gd}\left(\mathrm{BO}_{3}\right)_{2}$ and $\mathrm{K}_{3} \mathrm{Gd}\left(\mathrm{PO}_{4}\right)_{2}$ crystal were performed by density functional theory ${ }^{[53]}$ using the Vienna $a b$ initio simulation package code, ${ }^{[S 4]}$ which has been applied on rare-earth materials successfully. ${ }^{[55]}$ In all calculations, the 750 eV cutoff energy and $(3 \times 3 \times 4)$ Monkhorst-Pack k-point meshes were selected to ensure sufficient accuracy of the simulated results. ${ }^{[56]}$ The structural lattices and atomic positions were fully optimized. The exchange-correlation functionals were described by generalized gradient density approximation Perdew-Burke-Ernzerhof (PBE) function ${ }^{[57]}$ and the ion-electron interactions for all elements were modeled by the projector augmented-wave (PAW) potentials. ${ }^{[88]}$ The lattice vibrations of them were calculated by the Phonopy. ${ }^{[59]}$

2. Additional figures

Figure S1. Electronic density distribution of $\mathrm{K}_{3} \mathrm{Gd}_{\left(\mathrm{BO}_{3}\right)_{2} \text {. The quasi-1D chain was built by }}^{\text {. }}$ Gd^{3+} ion and bidentate- BO_{3} groups.

Figure S2. Powder X-ray diffraction pattern of polycrystalline $\mathrm{K}_{3} \mathrm{Gd}\left(\mathrm{BO}_{3}\right)_{2}$.

Figure S3. UV-vis-NIR diffuse reflectance spectrum of $K_{3} \mathrm{Gd}_{\left(\mathrm{BO}_{3}\right)_{2} \text {. Insert: } \mathrm{F}(\mathrm{R}) \text { versus }{ }^{\text {S }} \text {. }}$ wavelength.

Figure S4. Fluorescence emission of $\mathrm{K}_{3} \mathrm{Gd}\left(\mathrm{BO}_{3}\right)_{2}$ under different temperatures.

Figure S5. Phonon dispersion and phonon projected density of states of $\mathrm{K}_{3} \operatorname{Gd}\left(\mathrm{BO}_{3}\right)_{2}$.

Figure S6. Raman spectrum of $\mathrm{K}_{3} \mathrm{Gd}\left(\mathrm{BO}_{3}\right)_{2}$.

Figure S7. Powder X-ray diffraction pattern of polycrystalline $\mathrm{Li}_{3} \mathrm{~K}_{9} \mathrm{Gd}_{3}\left(\mathrm{BO}_{3}\right)_{7}$.

Figure S8. Peak fitting results of fluorescence spectra of $\mathrm{Li}_{3} \mathrm{~K}_{9} \mathrm{Gd}_{3}\left(\mathrm{BO}_{3}\right)_{7}$ at 77 K .

Figure S9. Coordination environment of $\mathrm{K}_{3} \mathrm{Gd}\left(\mathrm{PO}_{4}\right)_{2}$.

Figure S10. Powder X-ray diffraction pattern of $\mathrm{K}_{3} \mathrm{Gd}\left(\mathrm{PO}_{4}\right)_{2}$.

Figure S11. Phonon dispersion and phonon projected density of states of $\mathrm{K}_{3} \mathrm{Gd}_{\left(\mathrm{PO}_{4}\right)_{2}}$. Raman spectrum is also plotted.

Figure S12. Powder X-ray diffraction pattern of $\mathrm{KGd}\left(\mathrm{PO}_{3}\right)_{4}$.

3. Additional tables

Table S1. Crystal data and structure refinements.

Empirical formula	$\mathrm{K}_{3} \mathrm{Pr}\left(\mathrm{BO}_{3}\right)_{2}$	$\mathrm{K}_{3} \mathrm{Nd}\left(\mathrm{BO}_{3}\right)_{2}$	$\mathrm{K}_{3} \mathrm{Gd}\left(\mathrm{BO}_{3}\right)_{2}$
CCDC code	2169921	2169922	2169923
Formula weight	375.83	379.16	392.17
Temperature/K	296(2)	296(2)	296(2)
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Pnma	Pnma	Pnma
a / \AA	9.0940 (12)	$9.0605(17)$	8.9588(13)
b / \AA	7.1721(11)	$7.1533(15)$	7.0621(10)
c / \AA	11.2310 (16)	11.213(2)	11.1427(14)
$\alpha /^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	90	90	90
$\gamma /{ }^{\circ}$	90	90	90
Volume/ \AA^{3}	732.52(18)	704.98(17)	704.98(17)
Z	4	4	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	3.408	3.465	3.695
μ / mm^{-1}	8.332	8.838	11.154
$F(000)$	696.0	700.0	716.0
Radiation	Mo K $\alpha(\lambda=0.71073)$	Mo K $\alpha(\lambda=0.71073)$	Mo $\mathrm{K} \alpha(\lambda=0.71073)$
2θ range for data collection ${ }^{\circ}$	5.764 to 61.032	6.756 to 50.418	5.834 to 61.022
Index ranges	$\begin{gathered} -12 \leq h \leq 9,-6 \leq k \leq \\ 10,-16 \leq l \leq 15 \end{gathered}$	$\begin{gathered} -10 \leq h \leq 10,-7 \leq k \leq 8, \\ -11 \leq l \leq 13 \end{gathered}$	$\begin{gathered} -12 \leq h \leq 11,-9 \leq k \leq 9, \\ -12 \leq l \leq 15 \end{gathered}$
Reflections collected	8219	7562	5042
Independent reflections	1192 [$\left.R_{\text {int }}=0.0929\right]$	$707\left[R_{\text {int }}=0.1364\right]$	$1139\left[R_{\text {int }}=0.0837\right]$
Data/restraints/parameters	1192/0/67	707/12/67	1139/0/68
Goodness-of-fit on F^{2}	1.051	1.016	1.043
Final R indexes $[I>=2 \sigma(I)]$	$\begin{gathered} R_{I}=0.0414 \\ w R_{2}=0.0778 \end{gathered}$	$\begin{gathered} R_{l}=0.0405 \\ w R_{2}=0.0658 \end{gathered}$	$\begin{gathered} R_{l}=0.0368 \\ w R_{2}=0.0617 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} R_{I}=0.0652 \\ w R_{2}=0.0866 \end{gathered}$	$\begin{gathered} R_{I}=0.0738 \\ w R_{2}=0.0757 \end{gathered}$	$\begin{gathered} R_{l}=0.0571 \\ w R_{2}=0.0694 \end{gathered}$
Largest diff. peak/hole / e \AA^{-3}	1.51/-2.02	1.16/-1.35	1.75/-2.28

Table S2. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$.
$\mathrm{K}_{3} \operatorname{Pr}\left(\mathrm{BO}_{3}\right)_{2}:$

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
B1	$5618(10)$	7500	$1245(8)$	$9.8(18)$
B2	$5910(10)$	7500	$6181(8)$	$9.8(19)$
K1	$4392(3)$	7500	$-1308(2)$	$50.7(9)$
K2	$8001.9(14)$	$5033(2)$	$-976.8(11)$	$17.3(3)$
O1	$6588(5)$	7500	$319(5)$	$15.5(14)$
O2	$6196(5)$	7500	$2397(5)$	$15.9(14)$
O3	$4117(6)$	7500	$1127(5)$	$16.6(14)$
O4	$5096(6)$	7500	$5135(5)$	$11.8(12)$
O5	$6291(4)$	$9172(6)$	$6699(4)$	$20.6(11)$
Pr1	$3737.9(5)$	7500	$3321.9(4)$	$7.34(14)$

$\mathrm{K}_{3} \mathrm{Nd}\left(\mathrm{BO}_{3}\right)_{2}$:

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{\text { U(eq) }}$
B1	$5637(18)$	7500	$6278(15)$	$19(4)$
B2	$9095(17)$	2500	$6184(16)$	$20(4)$
K1	$8004(2)$	$9963(3)$	$4020(2)$	$23.2(6)$
K2	$4391(4)$	7500	$3696(3)$	$54.7(13)$
Nd1	$8739.3(8)$	7500	$6680.4(7)$	$12.7(2)$
O1	$4115(9)$	7500	$6144(8)$	$16(2)$
O2	$6203(10)$	7500	$7409(8)$	$18(2)$
O3	$6593(9)$	7500	$5316(8)$	$18(2)$
O4	$8714(7)$	$4174(8)$	$6703(6)$	$23.9(15)$
O5	$9910(9)$	2500	$5138(9)$	$16(2)$

$\mathrm{K}_{3} \mathbf{G d}\left(\mathrm{BO}_{3}\right)_{2}$:

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
B1	$643(11)$	2500	$6272(8)$	$9.6(19)$
B2	$5878(10)$	2500	$3840(8)$	$13(2)$
Gd1	$3745.7(4)$	2500	$6688.2(3)$	$7.51(16)$
K1	$-609(3)$	2500	$3700.7(18)$	$44.9(7)$
K2	$3003.8(15)$	$4946.1(19)$	$4022.0(10)$	$17.5(3)$
O1	$-882(6)$	2500	$6162(5)$	$13.4(13)$
O2	$1225(5)$	2500	$7434(4)$	$12.7(13)$
O3	$1631(6)$	2500	$5347(5)$	$16.1(13)$
O4	$5085(6)$	2500	$4907(5)$	$11.2(12)$
O5	$6267(4)$	$798(6)$	$3307(3)$	$16.8(10)$

Table S3. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$.
$\mathrm{K}_{3} \operatorname{Pr}\left(\mathrm{BO}_{3}\right)_{2}:$

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
B1	$11(4)$	$14(5)$	$4(4)$	0	$0(4)$	0
B2	$12(5)$	$12(5)$	$5(4)$	0	$5(3)$	0
K1	$20.1(12)$	$119(3)$	$12.9(10)$	0	$-1.6(9)$	0
K2	$17.0(7)$	$14.8(7)$	$20.1(7)$	$-8.4(6)$	$-0.1(5)$	$-1.4(6)$
O1	$10(3)$	$29(4)$	$8(3)$	0	$0(2)$	0
O2	$6(3)$	$33(4)$	$9(3)$	0	$-2(2)$	0
O3	$9(3)$	$30(4)$	$11(3)$	0	$-1(2)$	0
O4	$9(3)$	$14(3)$	$12(3)$	0	$-2(2)$	0
O5	$34(3)$	$6(2)$	$22(2)$	$-1.9(18)$	$-12.1(18)$	$-1(2)$
Pr1	$7.0(2)$	$9.3(2)$	$5.7(2)$	0	$-0.41(16)$	0

$\mathrm{K}_{3} \mathrm{Nd}\left(\mathrm{BO}_{3}\right)_{2}:$

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
B1	$19(4)$	$18(4)$	$19(4)$	0	$-0.2(10)$	0
B2	$16(9)$	$14(9)$	$31(11)$	0	$6(8)$	0
K1	$19.0(11)$	$19.4(12)$	$31.2(14)$	$6.6(12)$	$0.2(10)$	$1.2(11)$
K2	$22.6(19)$	$115(4)$	$26(2)$	0	$-1.7(17)$	0
Nd1	$10.0(4)$	$11.2(4)$	$16.8(4)$	0	$0.2(4)$	0
O1	$16(2)$	$17(2)$	$16(2)$	0	$-0.5(10)$	0
O2	$10(4)$	$28(5)$	$17(5)$	0	$-1(4)$	0
O3	$14(5)$	$22(5)$	$18(6)$	0	$8(4)$	0
O4	$30(4)$	$20(4)$	$22(4)$	$-4(3)$	$6(4)$	$-2(3)$
O5	$6(4)$	$18(5)$	$25(6)$	0	$-5(4)$	0

$\mathrm{K}_{\mathbf{3}} \mathrm{Gd}\left(\mathrm{BO}_{3}\right)_{2}$:

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
B1	$6(5)$	$10(5)$	$14(4)$	0	$5(4)$	0
B2	$9(5)$	$15(6)$	$15(4)$	0	$1(3)$	0
Gd1	$6.4(2)$	$8.8(3)$	$7.3(2)$	0	$0.34(14)$	0
K1	$20.0(12)$	$99(2)$	$15.6(9)$	0	$-3.0(9)$	0
K2	$15.7(7)$	$15.3(7)$	$21.3(6)$	$7.5(6)$	$0.7(5)$	$0.5(6)$
O1	$6(3)$	$22(4)$	$12(3)$	0	$0(2)$	0
O2	$8(3)$	$21(3)$	$8(2)$	0	$-2(2)$	0
O3	$7(3)$	$29(4)$	$12(2)$	0	$5(2)$	0
O4	$11(3)$	$10(3)$	$13(3)$	0	$-1(2)$	0
O5	$28(3)$	$7(2)$	$15(2)$	$-0.9(16)$	$7.8(17)$	$-0.1(19)$

Table S4. Selected bond lengths.
$\mathrm{K}_{3} \operatorname{Pr}\left(\mathrm{BO}_{3}\right)_{2}:$

Atom	Atom	Length/Å	Atom	Atom	Length/ \AA
B1	K1	3.077(9)	K2	$\mathrm{O} 4{ }^{3}$	2.766 (4)
B1	$\mathrm{K} 1{ }^{1}$	3.5868(6)	K2	O4 ${ }^{13}$	2.802(4)
B1	$\mathrm{K} 1{ }^{2}$	3.5868(6)	K2	O5 ${ }^{14}$	3.152(4)
B1	O1	$1.364(10)$	K2	O5 ${ }^{15}$	$3.135(4)$
B1	O2	1.397(10)	K2	O5 ${ }^{12}$	3.091(4)
B1	O3	1.372(11)	K2	$\operatorname{Pr} 1^{3}$	$3.5311(13)$
B1	$\operatorname{Pr} 1^{3}$	2.878(9)	O1	K2 ${ }^{9}$	2.627(4)
B1	Pr1	2.892(9)	O1	$\operatorname{Pr} 1^{3}$	2.481(5)
B2	$\mathrm{K} 1{ }^{3}$	3.170 (9)	O 2	K2 ${ }^{5}$	2.677(4)
B2	K1 ${ }^{4}$	3.140 (9)	O2	$\mathrm{K} 2^{7}$	2.677(4)
B2	K2 ${ }^{5}$	3.187(7)	O2	Pr1 ${ }^{3}$	$2.448(5)$
B2	K2 ${ }^{6}$	3.190 (8)	O2	Pr1	$2.465(5)$
B2	K2 ${ }^{7}$	$3.187(7)$	O3	$\mathrm{K} 2^{2}$	2.654(4)
B2	$\mathrm{K} 2^{8}$	3.190 (8)	O3	$\mathrm{K} 2{ }^{16}$	2.654(4)
B2	O4	$1.389(10)$	O3	Pr1	2.489(6)
B2	O5	$1.378(6)$	O4	K2 ${ }^{8}$	2.766 (4)
B2	O5 ${ }^{9}$	$1.378(6)$	O4	K2 ${ }^{6}$	$2.766(4)$
K1	B1 ${ }^{2}$	$3.5868(6)$	O4	K2 ${ }^{7}$	2.802(4)
K1	B1 ${ }^{1}$	3.5868(6)	O4	K2 ${ }^{5}$	2.802(4)
K1	B2 ${ }^{6}$	3.170 (9)	O4	Pr1	$2.381(5)$
K1	B2 ${ }^{10}$	3.140 (9)	O5	$\mathrm{K} 1{ }^{3}$	$3.095(4)$
K1	K2 ${ }^{11}$	3.745 (2)	O5	K1 ${ }^{4}$	$3.071(5)$
K1	O1	2.707(6)	O5	K2 ${ }^{7}$	$3.135(4)$
K1	O3	2.747(6)	O5	K2 ${ }^{17}$	3.091(4)
K1	O5 ${ }^{12}$	$3.071(5)$	O5	$\mathrm{K} 2{ }^{8}$	3.152(4)
K1	O5 ${ }^{8}$	$3.095(4)$	O5	Pr1 1^{18}	2.387(4)
K1	O5 ${ }^{10}$	$3.071(5)$	Pr1	B1 ${ }^{6}$	$2.878(9)$
K1	O5 ${ }^{6}$	$3.095(4)$	Pr1	$\mathrm{K} 2{ }^{8}$	$3.5311(13)$
K2	B2 ${ }^{3}$	3.190 (8)	Prl	$\mathrm{K} 2^{6}$	3.5311 (13)
K2	B2 ${ }^{13}$	$3.187(7)$	Pr1	$\mathrm{K} 2{ }^{7}$	3.5653(14)
K2	$\mathrm{K} 2{ }^{9}$	3.539(3)	Prl	O1 ${ }^{6}$	2.481(5)
K2	O1	2.627(4)	Pr1	$\mathrm{O} 2{ }^{6}$	2.448 (5)
K2	$\mathrm{O} 2{ }^{13}$	2.677(4)	Pr1	O5 ${ }^{18}$	2.387(4)
K2	O3 ${ }^{2}$	2.654(4)	Pr1	O5 ${ }^{19}$	2.387(4)

[^0]$\mathrm{K}_{3} \mathrm{Nd}\left(\mathrm{BO}_{3}\right)_{2}:$

Atom	Atom	Length/ \AA	Atom	Atom	Length/i̊
B1	K2	3.108(17)	K2	O1	2.757(10)
B1	K2 ${ }^{1}$	3.5769(8)	K2	O3	2.698(9)
B1	K2 ${ }^{2}$	3.5769(8)	K2	O4 ${ }^{1}$	3.091(7)
B1	Nd1	2.847(16)	K2	O4 ${ }^{14}$	$3.062(7)$
B1	Nd1 ${ }^{3}$	2.863(17)	K2	O4 ${ }^{15}$	$3.091(7)$
B1	O1	1.387(18)	K2	$\mathrm{O} 4^{12}$	$3.062(7)$
B1	O2	1.368(18)	Nd1	B1 ${ }^{16}$	2.863(17)
B1	O3	1.383(18)	Nd1	K1 ${ }^{17}$	3.552(2)
B2	K14	$3.188(15)$	Nd1	K1 ${ }^{7}$	3.528 (2)
B2	K1 ${ }^{5}$	3.172 (13)	Nd1	$\mathrm{O} 1^{16}$	2.463(9)
B2	K1 ${ }^{6}$	3.172(13)	Nd1	O2	2.439 (10)
B2	K1 ${ }^{7}$	$3.188(15)$	Nd1	O2 ${ }^{16}$	$2.455(10)$
B2	K2 ${ }^{8}$	3.132(18)	Nd1	O3	2.474(9)
B2	K2 ${ }^{1}$	$3.162(16)$	Nd1	O4 ${ }^{7}$	2.380 (6)
B2	O4	1.375 (10)	Nd1	O4	2.380 (6)
B2	O4 ${ }^{9}$	1.375 (10)	Nd1	O5 ${ }^{6}$	2.378 (9)
B2	O5	1.386(19)	O1	K1 ${ }^{2}$	2.648 (6)
K1	B2 ${ }^{6}$	3.172(13)	O1	$\mathrm{K} 1^{18}$	2.648 (6)
K1	B2 ${ }^{10}$	$3.188(15)$	O1	Nd1 ${ }^{3}$	2.463(9)
K1	K17 ${ }^{7}$	3.523(5)	O2	K1 ${ }^{19}$	2.660 (7)
K1	Nd1	3.528(2)	O 2	K1 ${ }^{20}$	2.660 (7)
K1	O^{2}	2.648 (6)	O2	Nd1 ${ }^{3}$	2.455(9)
K1	$\mathrm{O} 2^{11}$	$2.660(7)$	O3	K1 ${ }^{7}$	$2.617(7)$
K1	O3	2.617(7)	O4	K1 ${ }^{5}$	3.133 (7)
K1	O4 ${ }^{7}$	3.138(7)	O4	K1 ${ }^{20}$	3.081(7)
K1	$\mathrm{O} 4^{12}$	3.081(7)	O4	K1 ${ }^{7}$	$3.137(7)$
K1	$\mathrm{O} 4^{13}$	$3.133(7)$	O4	K2 ${ }^{8}$	$3.062(7)$
K1	O5 ${ }^{10}$	2.801(7)	O4	K2 ${ }^{1}$	$3.091(7)$
K1	O5 ${ }^{6}$	2.751(7)	O5	K14	$2.801(7)$
K2	B1 ${ }^{2}$	3.5769(8)	O5	K1 ${ }^{7}$	2.801(7)
K2	$\mathrm{B} 1{ }^{1}$	3.5769(8)	O5	K1 ${ }^{6}$	2.751(7)
K2	B2 ${ }^{14}$	$3.132(18)$	O5	K1 ${ }^{5}$	2.751(7)
K2	B2 ${ }^{1}$	3.162(16)	O5	Nd1 ${ }^{6}$	2.378 (9)

[^1]$\mathrm{K}_{3} \mathrm{Gd}\left(\mathrm{BO}_{3}\right)_{2}:$

Atom	Atom	Length/i̊	Atom	Atom	Length/ $/$ ¢
B1	Gd1	2.818(10)	K1	O1	2.753(6)
B1	Gd1 ${ }^{1}$	2.838(9)	K1	O3	2.718 (6)
B1	K1 ${ }^{2}$	3.5313(5)	K1	O5 ${ }^{14}$	3.045(4)
B1	K1 ${ }^{3}$	$3.5313(5)$	K1	O5 ${ }^{13}$	3.045(4)
B1	K1	3.077(9)	K1	O5 ${ }^{15}$	3.077(4)
B1	O1	1.373(10)	K1	O5 ${ }^{12}$	3.077(4)
B1	O2	1.396(10)	K2	B2 ${ }^{8}$	$3.152(8)$
B1	O3	1.358(10)	K2	K2 ${ }^{6}$	$3.455(3)$
B2	K14	3.152(9)	K2	O^{2}	$2.628(4)$
B2	K1 ${ }^{5}$	3.128(9)	K2	$\mathrm{O} 2^{16}$	$2.619(4)$
B2	K2 ${ }^{6}$	3.107(8)	K2	O3	2.584(4)
B2	K2 ${ }^{7}$	$3.152(8)$	K2	O4	2.726 (4)
B2	K2	3.107(8)	K2	O4 ${ }^{8}$	$2.759(4)$
B2	K2 ${ }^{8}$	3.152(8)	K2	O5 ${ }^{6}$	3.076(4)
B2	O4	1.385(10)	K2	O5 ${ }^{11}$	$3.106(4)$
B2	O5 ${ }^{6}$	1.385(6)	K2	O5 ${ }^{14}$	$3.071(4)$
B2	O5	1.385(6)	O1	Gd1 ${ }^{1}$	$2.419(5)$
Gd1	B1 ${ }^{9}$	2.838(9)	O1	K2 ${ }^{17}$	$2.628(4)$
Gd1	K2 ${ }^{6}$	$3.5002(12)$	O1	K2 ${ }^{2}$	2.628(4)
Gd1	K2	$3.5002(12)$	O2	Gd1 ${ }^{1}$	$2.427(5)$
Gd1	K2 ${ }^{8}$	3.5156(14)	O2	K2 ${ }^{18}$	2.619(4)
Gd1	$\mathrm{O1}^{9}$	2.419(5)	O2	K2 ${ }^{19}$	2.619(4)
Gd1	$\mathrm{O} 2{ }^{9}$	2.427(5)	O3	K2 ${ }^{6}$	2.584(4)
Gd1	O2	2.406(5)	O4	K2 ${ }^{8}$	2.759 (4)
Gd1	O3	$2.413(5)$	O4	K2 ${ }^{6}$	2.726 (4)
Gd1	O4	2.319 (5)	O4	K2 ${ }^{7}$	$2.759(4)$
Gd1	O5 ${ }^{10}$	2.329 (4)	O5	Gd1 ${ }^{10}$	2.329(4)
Gd1	O5 ${ }^{11}$	$2.329(4)$	O5	K1 ${ }^{4}$	3.077(4)
K1	B1 ${ }^{2}$	$3.5313(5)$	O5	K15	$3.045(4)$
K1	B1 ${ }^{3}$	$3.5313(5)$	O5	K2 ${ }^{6}$	3.076 (4)
K1	B2 ${ }^{12}$	3.152(9)	O5	K2 ${ }^{7}$	$3.106(4)$
K1	B2 ${ }^{13}$	3.128(9)	O5	K2 ${ }^{20}$	3.071(4)
K1	K2	3.686(2)			

[^2]
References

[S1] M. Adam, P. Dera and M. Ruf, Integrated solutions for most efficient in-house highpressure single-crystal experiments, Acta Cryst. A, 2018, A74, a315.
[S2] G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Cryst. C, 2015, C71, 3-8.
[S3] W. Kohn, Nobel lecture: Electronic structure of matter-wave functions and density functionals, Rev. Mod. Phys., 1999, 71, 1253-1266.
[S4] G. Kresse and J. Furthmuller, Efficient iterative schemes for $a b$ initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54, 11169-11186.
[S5] F. Liang, L. Kang, Z. S. Lin, Y. C. Wu and C. T. Chen, Analysis and prediction of MidIR nonlinear optical metal sulfides with diamond-like structures, Coord. Chem. Rev., 2017, 333, 57-70.
[S6] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-Zone integrations, Phys. Rev. B, 1976, 13, 5188-5192.
[S7] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77, 3865-3868.
[S8] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method, Phys. Rev. B, 1999, 59, 1758-1775.
[S9] A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater., 2015, 108, 1-5.

[^0]: ${ }^{1} 1-X, 2-Y,-Z ;{ }^{2} 1-X, 1-Y,-Z ;{ }^{3} 1 / 2+X,+Y, 1 / 2-Z ;{ }^{4}+X,+Y, 1+Z ;{ }^{5} 3 / 2-X, 1-Y, 1 / 2+Z ;{ }^{6}-1 / 2+X,+Y, 1 / 2-Z ;{ }^{7} 3 / 2-X, 1 / 2+Y, 1 / 2+Z ;{ }^{8}-$ $1 / 2+X, 3 / 2-Y, 1 / 2-Z ;{ }^{9}+X, 3 / 2-Y,+Z ;{ }^{10}+X,+Y,-1+Z ;{ }^{11}-1 / 2+X,+Y,-1 / 2-Z ;{ }^{12}+X, 3 / 2-Y,-1+Z ;{ }^{13} 3 / 2-X, 1-Y,-1 / 2+Z ;{ }^{14} 1 / 2+X, 3 / 2-$ $\mathrm{Y}, 1 / 2-\mathrm{Z} ;{ }^{15} 3 / 2-\mathrm{X},-1 / 2+\mathrm{Y},-1 / 2+\mathrm{Z} ;{ }^{16} 1-\mathrm{X}, 1 / 2+\mathrm{Y},-\mathrm{Z} ;{ }^{17}+\mathrm{X}, 3 / 2-\mathrm{Y}, 1+\mathrm{Z} ;{ }^{18} 1-\mathrm{X}, 2-\mathrm{Y}, 1-\mathrm{Z} ;{ }^{19} 1-\mathrm{X},-1 / 2+\mathrm{Y}, 1-\mathrm{Z}$

[^1]: ${ }^{1} 1-X, 1-Y, 1-Z ;{ }^{2} 1-X, 2-Y, 1-Z ;{ }^{3}-1 / 2+X,+Y, 3 / 2-Z ;{ }^{4}+X,-1+Y,+Z ;{ }^{5} 2-X,-1 / 2+Y, 1-Z ;{ }^{6} 2-X, 1-Y, 1-Z ;{ }^{7}+X, 3 / 2-Y,+Z ;{ }^{8} 3 / 2-X, 1-$ $\mathrm{Y}, 1 / 2+\mathrm{Z} ;{ }^{9}+\mathrm{X}, 1 / 2-\mathrm{Y},+\mathrm{Z} ;{ }^{10}+\mathrm{X}, 1+\mathrm{Y},+\mathrm{Z} ;{ }^{11} 3 / 2-\mathrm{X}, 2-\mathrm{Y},-1 / 2+\mathrm{Z} ;{ }^{12} 3 / 2-\mathrm{X}, 1 / 2+\mathrm{Y},-1 / 2+\mathrm{Z} ;{ }^{13} 2-\mathrm{X}, 1 / 2+\mathrm{Y}, 1-\mathrm{Z} ;{ }^{14} 3 / 2-\mathrm{X}, 1-\mathrm{Y},-1 / 2+\mathrm{Z} ;{ }^{15} 1-$ $\mathrm{X}, 1 / 2+\mathrm{Y}, 1-\mathrm{Z} ;{ }^{16} 1 / 2+\mathrm{X},+\mathrm{Y}, 3 / 2-\mathrm{Z} ;{ }^{17} 2-\mathrm{X}, 2-\mathrm{Y}, 1-\mathrm{Z} ;{ }^{18} 1-\mathrm{X},-1 / 2+\mathrm{Y}, 1-\mathrm{Z} ;{ }^{19} 3 / 2-\mathrm{X}, 2-\mathrm{Y}, 1 / 2+\mathrm{Z} ;{ }^{20} 3 / 2-\mathrm{X},-1 / 2+\mathrm{Y}, 1 / 2+\mathrm{Z}$

[^2]: ${ }^{1}-1 / 2+X,+Y, 3 / 2-Z ;{ }^{2}-X, 1-Y, 1-Z ;{ }^{3}-X,-Y, 1-Z ;{ }^{4} 1+X,+Y,+Z ;{ }^{5} 1 / 2+X,+Y, 1 / 2-Z ;{ }^{6}+X, 1 / 2-Y,+Z ;{ }^{7} 1-X,-1 / 2+Y, 1-Z ;{ }^{8} 1-X, 1-Y, 1-$
 $Z ;{ }^{9} 1 / 2+X,+Y, 3 / 2-Z ;{ }^{10} 1-X,-Y, 1-Z ;{ }^{11} 1-X, 1 / 2+Y, 1-Z ;{ }^{12}-1+X,+Y,+Z ;{ }^{13}-1 / 2+X,+Y, 1 / 2-Z ;{ }^{14}-1 / 2+X, 1 / 2-Y, 1 / 2-Z ;{ }^{15}-1+X, 1 / 2-$
 $\mathrm{Y},+\mathrm{Z} ;{ }^{16} 1 / 2-\mathrm{X}, 1-\mathrm{Y},-1 / 2+\mathrm{Z} ;{ }^{17}-\mathrm{X},-1 / 2+\mathrm{Y}, 1-\mathrm{Z} ;{ }^{18} 1 / 2-\mathrm{X}, 1-\mathrm{Y}, 1 / 2+\mathrm{Z} ;{ }^{19} 1 / 2-\mathrm{X},-1 / 2+\mathrm{Y}, 1 / 2+\mathrm{Z} ;{ }^{20} 1 / 2+\mathrm{X}, 1 / 2-\mathrm{Y}, 1 / 2-\mathrm{Z}$

