Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting information for

Anomalous thermal transport behavior in graphene-like carbon nitride (C₃N)

Guangzhao Qin,^{1,5} Jianzhou Lin¹, Huimin Wang,² Jianjun Hu,³ Zhenzhen Qin,^{4*} and Ming Hu^{5*}

¹State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China

²Hunan Key Laboratory for Micro-Nano Energy Materials & Device and School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, Hunan, China

³Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA ⁴School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China

⁵Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA

Author to whom all correspondence should be addressed. E-Mail: Z.Q. <qzz@zzu.edu.cn>, M.H. <hu@sc.edu>

Fig. S1. The orbital projected electronic structures for (a) Graphene, (b) C atoms in C₃N, and (c) N atoms in C₃N. The relative contribution of corresponding oribitals are represented by the size of the circles

Fig. S2. Comparison of the normalized cumulative κ of C₃N and graphene at 300 and 800 K as a function of phonon mean free path.

To evaluate the effect of four phonons, we plotted the ratio of four-phonon scattering phase space (P_4) to three-phonon scattering phase space (P_3) as a function of frequency (Fig. S3). For BAs, it is shown that P_4 is significantly higher than P_3 , which implies that four-phonon scattering dominates the phonon-phonon scattering process. In contrast, in monolayer C_3N , P_4 is smaller than P_3 , which proves that three-phonon plays a dominant role in phonon-phonon scattering. In addition, the ratio of P_4 total to P_3 total for BAs and C_3N is plotted in the inset of Fig. 3 to more clearly measure the effect of four-phonon scattering in C_3N . Based on the above analysis, the behavior of the four phonons in C_3N is weak and can be ignored, which is consistent with the gapless characteristics of phonon dispersions of C_3N (Fig. 1 in the main text).

Fig. S3. The ratio of four-phonon scattering phase space (P4) to three-phonon scattering phase space (P3) for BAs and C_3N . The inset shows the ratio of P_4 total to P_3 total for BAs and C_3N .

Fig. S4 The convergence test of κ with respect to the cutoff distance and Q-grid are fully conducted, based on which the cutoff distance is chosen as 7.36 Å (13th nearest neighbors) for the 3rd IFCs calculations and the Q-grid is chosen as 50 × 50 × 1 for the κ calculations.

Fig. S5 Convergence test of κ in terms of Q-grid under at 1% to 8% strains.