## Axial Coordination Modification of M-N<sub>4</sub> Single-Atom Catalysts to Regulate the Electrocatalytic CO<sub>2</sub> Reduction Reaction

Mengbo Ma and Qing Tang\*

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China

\*To whom correspondence should be addressed. E-mail: <u>qingtang@cqu.edu.cn</u>

**Catalyst models.** Experimentally, various carbon-based conductive substrates, such as carbon nanotubes, graphene and amorphous or porous carbon have emerged as the supporting substrate to synthesize single-metal-atom catalysts. Especially, due to the strong binding with metal atoms and high electronic conductivity, the nitrogen-doped graphene is deemed as one of the most appealing substrates to stabilize single-metal-atom catalysts. In our work, a  $5 \times 5 \times 1$  supercell of graphene (lateral dimension of a = b =12.3 Å) with one doped metal that coordinated by four N atoms and one axial ligand L (-OH, -CH<sub>3</sub>, -SCH<sub>2</sub>CH<sub>3</sub>, -P(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>, -COOH, -NH<sub>2</sub>, -C=CC<sub>6</sub>H<sub>5</sub>, -C<sub>6</sub>H<sub>7</sub>O<sub>7</sub>, -NHC<sup>Me</sup>) is constructed to build the M-N<sub>4</sub>L/Gra electrocatalysts (M = Fe, Co, Ni) (Figure 1a and 1b). Ultimately, a total of 30 catalyst structures with different metal centers and axial ligands are constructed (including the pristine pure M-N<sub>4</sub> structure without axial modification).

The optimized geometries of the 30 structural models are shown in Figure S1. One

can see that the examined ligands are all chemically bonded to the Fe, Co and Ni center except for Ni-N<sub>4</sub>[P(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>]/Gra and Ni-N<sub>4</sub>[NHC<sup>Me</sup>]/Gra, where the neutral phosphine and NHC<sup>Me</sup> ligands are physically interacted with the Ni atom. The bonding distance between the metal atom and the ligated atom (e.g., C, N, O, S, P) as well as the Bader charge carried by the central metal are listed in Table S1. In general, the bonding distances between metal and the ligands have the order of Ni  $(1.903 \sim 2.413\text{\AA}) > \text{Co}$  $(1.829 \sim 2.300\text{\AA}) > \text{Fe} (1.817 \sim 2.169\text{\AA})$  (in some specific ligands such as -CH<sub>3</sub>, -COOH, -C<sub>6</sub>H<sub>7</sub>O<sub>7</sub>, the bonding distance with Fe is larger than Co). Moreover, the atomic charge of the metal center is greatly affected by the ligand functionalization. From the Bader charge analysis, the Ni atom bears more positive charge  $(+0.845 \sim +1.021 |e|)$  in Ni-N<sub>4</sub>L/Gra compared to the Ni-N<sub>4</sub>/Gra (+0.834 |e|) (Table S1). This indicates that the added axial ligands tend to attract the electron from the Ni atom, and the electron withdrawing becomes more evident for the -OH,  $-C_6H_7O_7$ ,  $-NH_2$  and  $-C \equiv CC_6H_5$  groups. By contrast, most of the ligand functionalized Co atom carries much less positive charge  $(+0.816 \sim +1.063 |e|)$  than the Co atom in Co-N<sub>4</sub>/Gra (+1.157 |e|), indicating that the ligand would donate electron to the Co center. An exception case is the -NH2 functionalized Co, which carries a slightly higher positive charge (+1.202 |e|) and suggests that -NH<sub>2</sub> acts as an electron acceptor in this case. The atomic charge of Fe in Fe-N<sub>4</sub>L/Gra systems is dramatically affected. The Fe center functionalized by -CH<sub>3</sub> (+1.219 |e|), -SCH<sub>2</sub>CH<sub>3</sub> (+1.169 |e|), -P(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub> (+0.842 |e|), -COOH (+1.382 |e|), and - $C_6H_7O_7$  (+1.339 |e|) is found to have much less positive charge than the pure Fe-N<sub>4</sub>/Gra (+1.960 |e|), while the Fe atom bears magnitude of higher positive charge after modification by -OH (+3.612 |*e*|), -NH<sub>2</sub> (+3.642 |*e*|), -C=CC<sub>6</sub>H<sub>5</sub> (+2.935 |*e*|), and -NHC<sup>Me</sup> (+3.638 |*e*|). The induced changes in the charge of the central metal imply that the introduction of axial ligands can greatly modulate the electronic structure of the active center and the CO<sub>2</sub>RR catalytic performance would be intuitively affected. In our subsequent section, we will focus on the electrocatalytic performance of the designed M-N<sub>4</sub>L/Gra structures.



Figure S1. The optimized structures of the pure  $M-N_4/Gra$  (top view) and the ligand modified  $M-N_4L/Gra$  (side view) (M = Fe, Co, Ni) structures.

Table S1. The bonding distance (Å) between the central metal atom (Fe, Co, Ni) and the terminal atom (e.g., C, N, O, S, P, F, Cl) from the axial ligands. Here "q" stands for the charge carried by the central metal atom.

|  | Fe-N <sub>4</sub> [L]/Gra | Co-N4[L]/Gra | NiN4/[L]/Gra |
|--|---------------------------|--------------|--------------|
|--|---------------------------|--------------|--------------|

|                                                 | d (Å) | q (e)  | d (Å) | q (e)  | d (Å) | q (e)  |
|-------------------------------------------------|-------|--------|-------|--------|-------|--------|
| Pure                                            |       | +1.960 |       | +1.157 |       | +0.834 |
| -ОН                                             | 1.817 | +3.612 | 1.868 | +1.053 | 2.000 | +1.021 |
| -CH <sub>3</sub>                                | 1.982 | +1.219 | 1.958 | +0.984 | 1.993 | +0.907 |
| -SCH <sub>2</sub> CH <sub>3</sub>               | 2.150 | +1.169 | 2.216 | +1.059 | 2.413 | +0.860 |
| -P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> | 2.169 | +0.842 | 2.300 | +0.816 | 3.007 | +0.845 |
| -СООН                                           | 1.910 | +1.382 | 1.889 | +1.063 | 1.948 | +0.897 |
| -NH <sub>2</sub>                                | 1.838 | +3.642 | 1.920 | +1.202 | 2.075 | +0.976 |
| -C≡CC <sub>6</sub> H <sub>5</sub>               | 1.824 | +2.935 | 1.829 | +0.964 | 1.903 | +0.936 |
| -C <sub>6</sub> H <sub>7</sub> O <sub>7</sub>   | 1.929 | +1.339 | 1.927 | +1.058 | 2.123 | +0.989 |
| -NHC <sup>Me</sup>                              | 1.910 | +3.638 | 2.096 | +0.920 | 3.014 | +0.863 |
| -F                                              | 1.822 | +3.581 | 1.840 | +1.218 | 1.957 | +1.048 |
| -Cl                                             | 2.196 | +2.225 | 2.208 | +1.056 | 2.361 | +0.955 |

Table S2. The adsorption energies (eV) of  $*CO_2$ , \*COOH and \*CO on M-N<sub>4</sub>L/Gra systems.

| Species                                                                 | $E_{\rm ads}(*{ m CO}_2)$ | E <sub>ads</sub> (*COOH) | $E_{\rm ads}(*{ m CO})$ |
|-------------------------------------------------------------------------|---------------------------|--------------------------|-------------------------|
| Fe-N <sub>4</sub> /Gra                                                  | -0.29                     | -0.37                    | -1.27                   |
| Fe-N <sub>4</sub> [OH]/Gra                                              | -0.33                     | 0.14                     | -0.64                   |
| Fe-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -0.31                     | 0.39                     | -0.43                   |
| Fe-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -0.32                     | 0.32                     | -0.36                   |
| Fe-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -0.33                     | 0.08                     | -0.61                   |

| Fe-N <sub>4</sub> [COOH]/Gra                                            | -0.34 | 0.37  | -0.48 |
|-------------------------------------------------------------------------|-------|-------|-------|
| Fe-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -0.31 | 0.24  | -0.44 |
| Fe-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | -0.31 | 0.36  | -0.55 |
| Fe-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -0.31 | -0.07 | -1.02 |
| Fe-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                              | -0.34 | 0.18  | -0.51 |
| Fe-N <sub>4</sub> [F]/Gra                                               | -0.40 | 0.10  | -0.92 |
| Fe-N <sub>4</sub> [Cl]/Gra                                              | -0.34 | 0.27  | -0.82 |
| Co-N <sub>4</sub> /Gra                                                  | -0.34 | -0.58 | -0.56 |
| Co-N <sub>4</sub> [OH]/Gra                                              | -0.32 | -0.12 | -0.38 |
| Co-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -0.32 | 0.34  | -0.01 |
| Co-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -0.32 | 0.11  | -0.01 |
| Co-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -0.36 | -0.09 | 0.17  |
| Co-N <sub>4</sub> [COOH]/Gra                                            | -0.31 | 0.35  | 0.12  |
| Co-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -0.31 | 0.08  | -0.2  |
| Co-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | -0.31 | 0.17  | 0.00  |
| Co-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -0.32 | -0.37 | -0.31 |
| Co-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                              | -0.36 | -0.14 | 0.18  |
| Co-N <sub>4</sub> [F]/Gra                                               | -0.32 | -0.27 | -0.52 |
| Co-N <sub>4</sub> [Cl]/Gra                                              | -0.33 | -0.11 | -0.17 |
| Ni-N <sub>4</sub> /Gra                                                  | -0.33 | 0.82  | 0.24  |
| Ni-N <sub>4</sub> [OH]/Gra                                              | -0.33 | 0.31  | 0.23  |
| Ni-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -0.34 | 0.44  | 0.21  |

| Ni-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -0.34 | 0.52 | 0.22 |
|-------------------------------------------------------------------------|-------|------|------|
| Ni-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -0.35 | 0.79 | 0.2  |
| Ni-N <sub>4</sub> [COOH]/Gra                                            | -0.34 | 0.45 | 0.22 |
| Ni-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -0.34 | 0.36 | 0.22 |
| Ni-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | -0.34 | 0.37 | 0.21 |
| Ni-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -0.33 | 0.49 | 0.23 |
| Ni-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                              | -0.52 | 0.64 | 0.01 |
| Ni-N <sub>4</sub> [F]/Gra                                               | -0.24 | 0.38 | 0.21 |
| Ni-N <sub>4</sub> [Cl]/Gra                                              | -0.34 | 0.63 | 0.23 |



Figure S2. The most stable structures of  $*CO_2$ , \*COOH and \*CO adsorbed on Fe-N<sub>4</sub>L/Gra.



Figure S3. The most stable structures of  $*CO_2$ , \*COOH and \*CO adsorbed on Co-N<sub>4</sub>L/Gra.



Figure S4. The most stable structures of \*CO<sub>2</sub>, \*COOH and \*CO adsorbed on Ni-N<sub>4</sub>L/Gra.



Figure S5. The charge density difference of CO adsorption over Fe-N<sub>4</sub>[OH]/Gra (a), Fe-N<sub>4</sub>[P(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>]/Gra (b), Co-N<sub>4</sub>[OH]/Gra (c), Co-N<sub>4</sub>[P(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>]/Gra (d), Ni-N<sub>4</sub>[OH]/Gra (e), and Ni-N<sub>4</sub>[NH<sub>2</sub>]/Gra (f), with isosurface level of 0.005 e Å<sup>-3</sup>. The cyan and magenta region represents electron depletion and accumulation, respectively.

Table S3. The detailed electronic energy ( $E_*$ , eV), zero-point energy ( $E_{ZPE}$ , eV), entropy corrections (TS, eV), and free energy (G, eV) of critical intermediate (\*CO<sub>2</sub>, \*COOH, \*CO, \*H) in M-N<sub>4</sub>L/Gra systems during electrochemical CO<sub>2</sub>RR.

| Species                                                                 | $E_{*{\rm CO}_2}$ | $E_{\rm ZPE}$ | TS   | $G_{*_{\mathrm{CO}_2}}$ |  |
|-------------------------------------------------------------------------|-------------------|---------------|------|-------------------------|--|
| Fe-N <sub>4</sub> /Gra                                                  | -471.17           | 0.31          | 0.23 | -471.09                 |  |
| FeN <sub>4</sub> [OH]/Gra                                               | -481.82           | 0.32          | 0.17 | -481.67                 |  |
| Fe-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -491.29           | 0.31          | 0.19 | -491.16                 |  |
| Fe-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -512.75           | 0.31          | 0.19 | -512.63                 |  |
| Fe-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -695.37           | 0.31          | 0.18 | -695.24                 |  |

| Fe-N <sub>4</sub> [COOH]/Gra                                            | -497.88     | 0.32          | 0.18 | -497.74       |
|-------------------------------------------------------------------------|-------------|---------------|------|---------------|
| Fe-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -486.96     | 0.31          | 0.19 | -486.83       |
| Fe-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | -560.01     | 0.32          | 0.30 | -560.00       |
| Fe-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -600.20     | 0.32          | 0.24 | -600.13       |
| Fe-N <sub>4</sub> [NHC]/Gra                                             | -606.24     | 0.31          | 0.13 | -606.06       |
| Fe-N <sub>4</sub> [F]/Gra                                               | -475.88     | 0.32          | 0.23 | -475.79       |
| Fe-N <sub>4</sub> [Cl]/Gra                                              | -474.52     | 0.32          | 0.24 | -474.44       |
| Co-N <sub>4</sub> /Gra                                                  | -470.20     | 0.31          | 0.17 | -470.06       |
| Co-N <sub>4</sub> [OH]/Gra                                              | -480.36     | 0.32          | 0.23 | -480.27       |
| Co-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -490.33     | 0.31          | 0.12 | -490.14       |
| Co-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -511.43     | 0.31          | 0.12 | -511.24       |
| Co-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -694.18     | 0.31          | 0.13 | -693.99       |
| Co-N <sub>4</sub> [COOH]/Gra                                            | -496.91     | 0.31          | 0.07 | -496.66       |
| Co-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -485.62     | 0.32          | 0.18 | -485.48       |
| Co-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | -558.86     | 0.31          | 0.19 | -558.73       |
| Co-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -598.98     | 0.31          | 0.06 | -598.74       |
| Co-N <sub>4</sub> [NHC]/Gra                                             | -604.92     | 0.31          | 0.18 | -604.78       |
| Co-N <sub>4</sub> [F]/Gra                                               | -474.34     | 0.31          | 0.18 | -474.21       |
| Co-N <sub>4</sub> [Cl]/Gra                                              | -473.25     | 0.31          | 0.12 | -473.07       |
| Ni-N <sub>4</sub> /Gra                                                  | -468.95     | 0.31          | 0.18 | -468.82       |
| Ni-N <sub>4</sub> [OH]/Gra                                              | -478.16     | 0.31          | 0.19 | -478.03       |
| Ni-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -487.79     | 0.32          | 0.18 | -487.65       |
| Ni-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -509.17     | 0.31          | 0.18 | -509.04       |
| Ni-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -692.32     | 0.31          | 0.20 | -692.21       |
| Ni-N <sub>4</sub> [COOH]/Gra                                            | -494.29     | 0.32          | 0.17 | -494.14       |
| Ni-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -483.27     | 0.31          | 0.12 | -483.09       |
| Ni-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | -556.29     | 0.32          | 0.28 | -556.25       |
| Ni-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -597.06     | 0.31          | 0.12 | -596.87       |
| Ni-N <sub>4</sub> [NHC]/Gra                                             | -603.27     | 0.31          | 0.18 | -603.14       |
| Ni-N <sub>4</sub> [F]/Gra                                               | -472.33     | 0.31          | 0.19 | -472.20       |
| Ni-N <sub>4</sub> [Cl]/Gra                                              | -471.27     | 0.31          | 0.14 | -471.09       |
|                                                                         | $E_{*COOH}$ | $E_{\rm ZPE}$ | TS   | $G_{(*COOH)}$ |
| Fe-N <sub>4</sub> /Gra                                                  | -474.63     | 0.63          | 0.14 | -474.14       |
| FeN <sub>4</sub> [OH]/Gra                                               | -484.73     | 0.61          | 0.17 | -484.29       |
| Fe-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -493.97     | 0.60          | 0.07 | -493.44       |
| Fe-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -515.50     | 0.61          | 0.17 | -515.06       |
| Fe-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -698.34     | 0.60          | 0.19 | -697.93       |
| Fe-N <sub>4</sub> [COOH]/Gra                                            | -500.55     | 0.60          | 0.13 | -500.09       |
| Fe-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -489.79     | 0.61          | 0.13 | -489.31       |
| Fe-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | -562.72     | 0.61          | 0.14 | -562.25       |
| Fe-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -603.35     | 0.60          | 0.14 | -602.89       |
| Fe-N <sub>4</sub> [NHC]/Gra                                             | -609.11     | 0.63          | 0.05 | -608.53       |
| Fe-N <sub>4</sub> [F]/Gra                                               | -478.86     | 0.61          | 0.16 | -478.41       |

| Fe-N <sub>4</sub> [Cl]/Gra                                              | -477.39        | 0.60          | 0.12 | -476.91     |
|-------------------------------------------------------------------------|----------------|---------------|------|-------------|
| Co-N <sub>4</sub> /Gra                                                  | -473.82        | 0.62          | 0.11 | -473.32     |
| Co-N <sub>4</sub> [OH]/Gra                                              | -483.54        | 0.61          | 0.11 | -483.04     |
| Co-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -493.05        | 0.62          | 0.22 | -492.65     |
| Co-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -514.38        | 0.62          | 0.16 | -513.91     |
| Co-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -697.29        | 0.64          | 0.21 | -696.87     |
| Co-N <sub>4</sub> [COOH]/Gra                                            | -499.63        | 0.62          | 0.16 | -499.17     |
| Co-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -488.61        | 0.62          | 0.17 | -488.16     |
| Co-N <sub>4</sub> [C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra               | -561.76        | 0.62          | 0.17 | -561.31     |
| Co-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -602.41        | 0.62          | 0.11 | -601.90     |
| Co-N <sub>4</sub> [NHC]/Gra                                             | -608.08        | 0.63          | 0.16 | -607.60     |
| Co-N <sub>4</sub> [F]/Gra                                               | -477.78        | 0.62          | 0.15 | -477.31     |
| Co-N <sub>4</sub> [Cl]/Gra                                              | -476.52        | 0.62          | 0.16 | -476.05     |
| Ni-N <sub>4</sub> /Gra                                                  | -471.18        | 0.61          | 0.19 | -470.76     |
| Ni-N4[OH]/Gra                                                           | -480.90        | 0.62          | 0.16 | -480.43     |
| Ni-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -490.40        | 0.61          | 0.17 | -489.96     |
| Ni-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -511.68        | 0.62          | 0.16 | -511.23     |
| Ni-N <sub>4</sub> [P( $C_6H_5$ ) <sub>3</sub> ]/Gra                     | -694.56        | 0.62          | 0.16 | -694.10     |
| Ni-N <sub>4</sub> [COOH]/Gra                                            | -496.88        | 0.61          | 0.16 | -496.43     |
| Ni-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -485.95        | 0.62          | 0.22 | -485.56     |
| Ni-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | -558.96        | 0.63          | 0.15 | -558.49     |
| $Ni-N_4[C_6H_7O_7]/Gra$                                                 | -599.63        | 0.62          | 0.11 | -599.11     |
| Ni-N <sub>4</sub> [NHC]/Gra                                             | -605.48        | 0.60          | 0.12 | -605.01     |
| Ni-N <sub>4</sub> [F]/Gra                                               | -475.09        | 0.63          | 0.22 | -474.68     |
| Ni-N <sub>4</sub> [Cl]/Gra                                              | -473.78        | 0.64          | 0.19 | -472.33     |
|                                                                         | $E_{*{ m CO}}$ | $E_{\rm ZPE}$ | TS   | $G_{(*CO)}$ |
| Fe-N <sub>4</sub> /Gra                                                  | -464.47        | 0.21          | 0.09 | -464.35     |
| FeN4[OH]/Gra                                                            | -474.45        | 0.21          | 0.09 | -474.32     |
| Fe-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -483.73        | 0.21          | 0.09 | -483.61     |
| Fe-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -505.11        | 0.21          | 0.08 | -504.98     |
| Fe-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -687.97        | 0.22          | 0.13 | -687.89     |
| Fe-N <sub>4</sub> [COOH]/Gra                                            | -490.34        | 0.21          | 0.08 | -490.21     |
| Fe-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -479.41        | 0.22          | 0.08 | -479.27     |
| Fe-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | -552.57        | 0.21          | 0.08 | -552.43     |
| Fe-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -593.24        | 0.22          | 0.07 | -593.09     |
| Fe-N <sub>4</sub> [NHC]/Gra                                             | -598.73        | 0.22          | 0.07 | -598.58     |
| Fe-N <sub>4</sub> [F]/Gra                                               | -468.72        | 0.22          | 0.07 | -468.57     |
| Fe-N <sub>4</sub> [Cl]/Gra                                              | -467.31        | 0.22          | 0.07 | -467.16     |
| Co-N <sub>4</sub> /Gra                                                  | -462.74        | 0.18          | 0.05 | -462.62     |
| Co-N <sub>4</sub> [OH]/Gra                                              | -472.74        | 0.21          | 0.09 | -472.62     |
| Co N [CH ]/Cro                                                          | -482.34        | 0.20          | 0.04 | -482.18     |
| CO-N4[CH3]/GIa                                                          |                |               |      |             |
| $Co-N_4[CH_3]/Gra$<br>$Co-N_4[SCH_2CH_3]/Gra$                           | -503.44        | 0.21          | 0.10 | -503.33     |

| Co-N <sub>4</sub> [COOH]/Gra                                            | -488.80        | 0.20          | 0.10 | -488.70             |
|-------------------------------------------------------------------------|----------------|---------------|------|---------------------|
| Co-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -477.83        | 0.21          | 0.10 | -477.72             |
| Co-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | -550.87        | 0.21          | 0.10 | -550.76             |
| Co-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -591.29        | 0.22          | 0.14 | -591.20             |
| Co-N <sub>4</sub> [NHC]/Gra                                             | -596.70        | 0.15          | 0.20 | -596.74             |
| Co-N <sub>4</sub> [F]/Gra                                               | -466.87        | 0.22          | 0.14 | -466.79             |
| Co-N <sub>4</sub> [Cl]/Gra                                              | -465.41        | 0.22          | 0.09 | -465.28             |
| Ni-N <sub>4</sub> /Gra                                                  | -460.70        | 0.15          | 0.23 | -460.78             |
| Ni-N4[OH]/Gra                                                           | -469.91        | 0.14          | 0.16 | -469.92             |
| Ni-N4[CH3]/Gra                                                          | -479.56        | 0.15          | 0.12 | -479.53             |
| Ni-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -500.92        | 0.15          | 0.14 | -500.91             |
| Ni-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -684.09        | 0.15          | 0.14 | -684.08             |
| Ni-N4[COOH]/Gra                                                         | -486.05        | 0.15          | 0.22 | -486.13             |
| Ni-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -475.04        | 0.14          | 0.16 | -475.06             |
| Ni-N <sub>4</sub> [C=CC <sub>6</sub> H <sub>5</sub> ]/Gra               | -548.06        | 0.15          | 0.27 | -548.18             |
| Ni-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -588.82        | 0.15          | 0.14 | -588.82             |
| Ni-N4[NHC]/Gra                                                          | -595.05        | 0.16          | 0.24 | -595.13             |
| Ni-N <sub>4</sub> [F]/Gra                                               | -464.10        | 0.15          | 0.19 | -464.14             |
| Ni-N <sub>4</sub> [Cl]/Gra                                              | -463.01        | 0.15          | 0.19 | -463.06             |
|                                                                         | $E_{*_{ m H}}$ | $E_{\rm ZPE}$ | TS   | $G_{(*\mathrm{H})}$ |
| Fe-N <sub>4</sub> /Gra                                                  | -451.34        | 0.24          | 0.00 | -451.10             |
| FeN <sub>4</sub> [OH]/Gra                                               | -461.44        | 0.16          | 0.00 | -461.28             |
| Fe-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -470.76        | 0.19          | 0.01 | -470.58             |
| Fe-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -491.58        | 0.15          | 0.01 | -491.43             |
| Fe-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -675.04        | 0.16          | 0.00 | -674.88             |
| Fe-N <sub>4</sub> [COOH]/Gra                                            | -477.32        | 0.20          | 0.01 | -477.12             |
| Fe-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -466.53        | 0.21          | 0.01 | -466.33             |
| Fe-N₄[C≡CC <sub>6</sub> H₅]/Gra                                         | -539.42        | 0.18          | 0.01 | -539.25             |
| Fe-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -580.11        | 0.14          | 0.00 | -579.97             |
| Fe-N <sub>4</sub> [NHC]/Gra                                             | -585.84        | 0.09          | 0.01 | -585.75             |
| Fe-N <sub>4</sub> [F]/Gra                                               | -455.62        | 0.25          | 0.00 | -455.37             |
| Fe-N <sub>4</sub> [Cl]/Gra                                              | -454.23        | 0.15          | 0.00 | -454.08             |
| Co-N <sub>4</sub> /Gra                                                  | -450.45        | 0.21          | 0.01 | -450.25             |
| Co-N <sub>4</sub> [OH]/Gra                                              | -460.19        | 0.21          | 0.01 | -459.98             |
| Co-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -469.62        | 0.19          | 0.01 | -469.43             |
| Co-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -491.04        | 0.21          | 0.01 | -490.84             |
| Co-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -674.06        | 0.23          | 0.00 | -673.83             |
| Co-N <sub>4</sub> [COOH]/Gra                                            | -476.23        | 0.20          | 0.01 | -476.04             |
| Co-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -465.25        | 0.21          | 0.01 | -465.05             |
| Co-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | -538.37        | 0.21          | 0.01 | -538.17             |
| Co-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -579.11        | 0.23          | 0.00 | -578.89             |
| Co-N <sub>4</sub> [NHC]/Gra                                             | -584.83        | 0.24          | 0.00 | -584.60             |
| $C_{2}$ N [E]/ $C_{2}$                                                  | 151 15         | 0.22          | 0.01 | 151 22              |

| Co-N <sub>4</sub> [Cl]/Gra                                              | -453.20 | 0.22 | 0.01 | -452.99 |
|-------------------------------------------------------------------------|---------|------|------|---------|
| Ni-N <sub>4</sub> /Gra                                                  | -447.78 | 0.13 | 0.01 | -447.66 |
| Ni-N <sub>4</sub> [OH]/Gra                                              | -457.68 | 0.22 | 0.00 | -457.46 |
| Ni-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -467.06 | 0.20 | 0.01 | -466.86 |
| Ni-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -488.43 | 0.21 | 0.01 | -488.23 |
| Ni-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -671.19 | 0.16 | 0.01 | -671.04 |
| Ni-N <sub>4</sub> [COOH]/Gra                                            | -473.60 | 0.21 | 0.01 | -473.39 |
| Ni-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -462.69 | 0.21 | 0.01 | -462.48 |
| Ni-N <sub>4</sub> [C=CC <sub>6</sub> H <sub>5</sub> ]/Gra               | -535.73 | 0.24 | 0.01 | -535.50 |
| Ni-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -576.48 | 0.23 | 0.01 | -576.26 |
| Ni-N <sub>4</sub> [NHC]/Gra                                             | -581.95 | 0.08 | 0.01 | -581.87 |
| Ni-N <sub>4</sub> [F]/Gra                                               | -451.92 | 0.23 | 0.00 | -451.69 |
| Ni-N <sub>4</sub> [Cl]/Gra                                              | -450.61 | 0.21 | 0.01 | -450.41 |

Table S4. The detailed electronic energy ( $E_*$ , eV), zero-point energy ( $E_{ZPE}$ , eV), entropy corrections

(TS, eV), and free energy (G, eV) of isolated molecule during electrochemical CO<sub>2</sub>RR.

| Species          | E*     | $E_{ZPE}$ | TS   | G      |
|------------------|--------|-----------|------|--------|
| $CO_2$           | -22.96 | 0.31      | 0.66 | -23.31 |
| $H_2$            | -6.76  | 0.27      | 0.40 | -6.89  |
| CO               | -14.84 | 0.13      | 0.61 | -15.32 |
| H <sub>2</sub> O | -14.25 | 0.59      | 0.58 | -14.24 |
|                  |        |           |      |        |

Table S5. The free energy change (eV) of the four elementary reaction steps ( $\Delta G_1$ ,  $\Delta G_2$ ,  $\Delta G_3$ ,  $\Delta G_4$ )

| of CO <sub>2</sub> RR and the adsorption Gibbs free energy of H ( $\Delta G_{\rm H}$ ) on the M-N <sub>4</sub> L/Gra systems. |
|-------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------|

|                                                                         | $\Delta G_1$ | $\Delta G_2$ | $\Delta G_3$ | $\Delta G_4$ | $\Delta G_{ m H}$ |  |
|-------------------------------------------------------------------------|--------------|--------------|--------------|--------------|-------------------|--|
| Fe-N <sub>4</sub> /Gra                                                  | 0.14         | 0.15         | -1.10        | 0.66         | 0.38              |  |
| FeN <sub>4</sub> [OH]/Gra                                               | 0.17         | 0.58         | -0.91        | 0.03         | 0.79              |  |
| Fe-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | 0.17         | 0.92         | -1.06        | -0.17        | 1.00              |  |
| Fe-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | 0.16         | 0.77         | -0.81        | -0.25        | 1.59              |  |
| Fe-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | 0.15         | 0.51         | -0.84        | 0.04         | 0.75              |  |
| Fe-N <sub>4</sub> [COOH]/Gra                                            | 0.15         | 0.86         | -1.01        | -0.14        | 1.01              |  |
| Fe-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | 0.17         | 0.71         | -0.84        | -0.18        | 0.92              |  |
| Fe-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | 0.05         | 0.95         | -1.07        | -0.07        | 1.04              |  |
| Fe-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | 0.11         | 0.44         | -1.09        | 0.39         | 0.51              |  |
| Fe-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                              | 0.20         | 0.73         | -0.94        | -0.12        | 0.74              |  |
| Fe-N <sub>4</sub> [F]/Gra                                               | 0.04         | 0.58         | -1.05        | 0.29         | 0.70              |  |
| Fe-N <sub>4</sub> [Cl]/Gra                                              | 0.09         | 0.73         | -1.15        | 0.19         | 0.68              |  |

| Co-N <sub>4</sub> /Gra                                                  | 0.15  | -0.06 | -0.19 | -0.04 | 0.20 |
|-------------------------------------------------------------------------|-------|-------|-------|-------|------|
| Co-N <sub>4</sub> [OH]/Gra                                              | 0.12  | 0.43  | -0.47 | -0.22 | 0.65 |
| Co-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | 0.22  | 0.68  | -0.41 | -0.63 | 1.17 |
| Co-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | 0.22  | 0.52  | -0.30 | -0.58 | 0.85 |
| Co-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | 0.18  | 0.32  | 0.13  | -0.77 | 0.58 |
| Co-N <sub>4</sub> [COOH]/Gra                                            | 0.28  | 0.69  | -0.42 | -0.70 | 1.15 |
| Co-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | 0.18  | 0.52  | -0.45 | -0.39 | 0.86 |
| Co-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | 0.17  | 0.62  | -0.34 | -0.59 | 0.97 |
| Co-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | 0.27  | 0.04  | -0.19 | -0.26 | 0.36 |
| Co-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                              | 0.12  | 0.38  | -0.03 | -0.61 | 0.55 |
| Co-N <sub>4</sub> [F]/Gra                                               | 0.16  | 0.10  | -0.36 | -0.04 | 0.39 |
| Co-N <sub>4</sub> [Cl]/Gra                                              | 0.21  | 0.21  | -0.12 | -0.44 | 0.53 |
| Ni-N <sub>4</sub> /Gra                                                  | 0.15  | 1.26  | -0.91 | -0.64 | 1.55 |
| Ni-N <sub>4</sub> [OH]/Gra                                              | 0.14  | 0.80  | -0.38 | -0.70 | 0.95 |
| Ni-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | 0.15  | 0.89  | -0.46 | -0.73 | 1.18 |
| Ni-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | 0.14  | 1.01  | -0.57 | -0.71 | 1.19 |
| Ni-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | 0.11  | 1.30  | -0.87 | -0.69 | 1.52 |
| Ni-N <sub>4</sub> [COOH]/Gra                                            | 0.16  | 0.91  | -0.59 | -0.62 | 1.15 |
| Ni-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | 0.20  | 0.73  | -0.39 | -0.68 | 1.04 |
| Ni-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | 0.05  | 0.96  | -0.58 | -0.57 | 1.05 |
| Ni-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | 0.21  | 0.95  | -0.59 | -0.71 | 1.07 |
| Ni-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                              | -0.04 | 1.32  | -1.01 | -0.42 | 1.47 |
| Ni-N <sub>4</sub> [F]/Gra                                               | 0.14  | 0.72  | -0.35 | -0.65 | 0.89 |
| Ni-N <sub>4</sub> [Cl]/Gra                                              | 0.18  | 0.95  | -0.61 | -0.67 | 1.11 |

Table S6. The limiting potential (V) of  $\rm CO_2RR$  and HER on the M-N<sub>4</sub>L/Gra systems.

| Species                                                                 | U <sub>L</sub> (CO <sub>2</sub> RR) | U <sub>L</sub> (HER) |
|-------------------------------------------------------------------------|-------------------------------------|----------------------|
| Fe-N <sub>4</sub> /Gra                                                  | -0.66                               | -0.38                |
| Fe-N <sub>4</sub> [OH]/Gra                                              | -0.58                               | -0.79                |
| Fe-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -0.92                               | -1.00                |
| Fe-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -0.77                               | -1.59                |
| Fe-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -0.51                               | -0.75                |
| Fe-N <sub>4</sub> [COOH]/Gra                                            | -0.86                               | -1.01                |
| Fe-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -0.71                               | -0.92                |

| Fe-N <sub>4</sub> [C=CC <sub>6</sub> H <sub>5</sub> ]/Gra               | -0.95 | -1.04 |
|-------------------------------------------------------------------------|-------|-------|
| Fe-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -0.44 | -0.51 |
| Fe-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                              | -0.73 | -0.74 |
| Fe-N <sub>4</sub> [F]/Gra                                               | -0.58 | -0.70 |
| Fe-N <sub>4</sub> [Cl]/Gra                                              | -0.73 | -0.68 |
| Co-N <sub>4</sub> /Gra                                                  | -0.15 | -0.20 |
| Co-N <sub>4</sub> [OH]/Gra                                              | -0.43 | -0.65 |
| Co-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -0.68 | -1.17 |
| Co-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -0.52 | -0.85 |
| Co-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -0.32 | -0.58 |
| Co-N <sub>4</sub> [COOH]/Gra                                            | -0.69 | -1.15 |
| Co-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | -0.52 | -0.86 |
| Co-N <sub>4</sub> [C=CC <sub>6</sub> H <sub>5</sub> ]/Gra               | -0.62 | -0.97 |
| Co-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | -0.27 | -0.36 |
| Co-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                              | -0.38 | -0.55 |
| Co-N <sub>4</sub> [F]/Gra                                               | -0.16 | -0.39 |
| Co-N <sub>4</sub> [Cl]/Gra                                              | -0.21 | -0.53 |
| Ni-N <sub>4</sub> /Gra                                                  | -1.26 | -1.55 |
| Ni-N <sub>4</sub> [OH]/Gra                                              | -0.80 | -0.95 |
| Ni-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | -0.89 | -1.18 |
| Ni-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | -1.01 | -1.19 |
| Ni-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | -1.30 | -1.52 |

| Ni-N <sub>4</sub> [COOH]/Gra                                          | -0.91 | -1.15 |
|-----------------------------------------------------------------------|-------|-------|
| Ni-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                              | -0.73 | -1.04 |
| Ni-N <sub>4</sub> [C=CC <sub>6</sub> H <sub>5</sub> ]/Gra             | -0.96 | -1.05 |
| Ni-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra | -0.95 | -1.07 |
| Ni-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                            | -1.32 | -1.47 |
| Ni-N <sub>4</sub> [F]/Gra                                             | -0.72 | -0.89 |
| Ni-N <sub>4</sub> [Cl]/Gra                                            | -0.95 | -1.11 |



Figure S6. Free energy diagrams of  $CO_2RR$  on several selected candidates: Fe-N<sub>4</sub>L/Gra (a), Co-N<sub>4</sub>L/Gra (b) and Ni-N<sub>4</sub>L/Gra (c).



Figure S7. Comparison of the Gibbs free energy change  $\Delta G$  (the largest free energy change among the elementary steps) on various M-N<sub>4</sub>L/Gra catalysts based on the constant solvation and the VASPsol solvation.

**Constant solvation** 

VASPsol solvation

-NHC<sup>Me</sup>

C<sub>6</sub>H<sub>7</sub>O<sub>7</sub>

| Species                                                                 | G(*COOH) | <i>G</i> (*CO) |
|-------------------------------------------------------------------------|----------|----------------|
| Fe-N <sub>4</sub> /Gra                                                  | 0.55     | -0.66          |
| Fe-N <sub>4</sub> [OH]/Gra                                              | 1.00     | -0.03          |
| Fe-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | 1.34     | 0.18           |
| Fe-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | 1.18     | 0.26           |
| Fe-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | 0.92     | -0.04          |
| Fe-N <sub>4</sub> [COOH]/Gra                                            | 1.26     | 0.14           |
| Fe-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | 1.14     | 0.18           |
| Fe-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | 1.25     | 0.07           |

Table S7. The adsorption Gibbs free energy (eV) of \*COOH and \*CO on the M-N<sub>4</sub>L/Gra systems.

| Fe-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | 0.81 | -0.39 |
|-------------------------------------------------------------------------|------|-------|
| Fe-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                              | 1.18 | 0.13  |
| Fe-N <sub>4</sub> [F]/Gra                                               | 0.87 | -0.29 |
| Fe-N <sub>4</sub> [Cl]/Gra                                              | 1.07 | -0.19 |
| Co-N <sub>4</sub> /Gra                                                  | 0.35 | 0.05  |
| Co-N <sub>4</sub> [OH]/Gra                                              | 0.81 | 0.23  |
| Co-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | 1.16 | 0.63  |
| Co-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | 0.99 | 0.58  |
| Co-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | 0.75 | 0.77  |
| Co-N <sub>4</sub> [COOH]/Gra                                            | 1.23 | 0.70  |
| Co-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | 0.96 | 0.39  |
| Co-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | 1.04 | 0.59  |
| Co-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | 0.57 | 0.26  |
| Co-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                              | 0.76 | 0.62  |
| Co-N <sub>4</sub> [F]/Gra                                               | 0.51 | 0.04  |
| Co-N <sub>4</sub> [Cl]/Gra                                              | 0.67 | 0.44  |
| Ni-N <sub>4</sub> /Gra                                                  | 1.67 | 0.64  |
| Ni-N <sub>4</sub> [OH]/Gra                                              | 1.20 | 0.70  |
| Ni-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | 1.30 | 0.73  |
| Ni-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | 1.40 | 0.72  |
| Ni-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | 1.67 | 0.69  |
| Ni-N <sub>4</sub> [COOH]/Gra                                            | 1.33 | 0.63  |

| Ni-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                              | 1.18 | 0.68 |
|-----------------------------------------------------------------------|------|------|
| Ni-N <sub>4</sub> [C=CC <sub>6</sub> H <sub>5</sub> ]/Gra             | 1.27 | 0.58 |
| Ni-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra | 1.42 | 0.72 |
| Ni-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                            | 1.54 | 0.42 |
| Ni-N <sub>4</sub> [F]/Gra                                             | 1.11 | 0.65 |
| Ni-N <sub>4</sub> [Cl]/Gra                                            | 1.39 | 0.67 |

Table S8. The total magnetic moment  $(\mu_B)$  of the M-N\_4L/Gra catalysts.

| Fe-N4[L]/Gra                                                            | Fe-N <sub>4</sub> [L]/Gra Co-N <sub>4</sub> [L]/Gra |                                                                         | 1    | Ni-N4[L]/Gra                                                            |      |
|-------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|------|-------------------------------------------------------------------------|------|
| Fe-N <sub>4</sub> /Gra                                                  | 2.00                                                | Co-N <sub>4</sub> /Gra                                                  | 0.99 | Ni-N <sub>4</sub> /Gra                                                  | 0.00 |
| Fe-N <sub>4</sub> [OH]/Gra                                              | 1.00                                                | Co-N <sub>4</sub> [OH]/Gra                                              | 0.00 | Ni-N <sub>4</sub> [OH]/Gra                                              | 0.56 |
| Fe-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | 1.00                                                | Co-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | 0.00 | Ni-N4[CH3]/Gra                                                          | 0.56 |
| Fe-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | 1.00                                                | Co-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | 0.00 | Ni-N4[SCH2CH3]/Gra                                                      | 0.56 |
| Fe-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | 0.00                                                | Co-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | 0.56 | Ni-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | 0.00 |
| Fe-N <sub>4</sub> [COOH]/Gra                                            | 1.00                                                | Co-N <sub>4</sub> [COOH]/Gra                                            | 0.00 | Ni-N <sub>4</sub> [COOH]/Gra                                            | 0.56 |
| Fe-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | 1.00                                                | Co-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | 0.00 | Ni-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                                | 0.56 |
| Fe-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | 1.00                                                | Co-N₄[C≡CC <sub>6</sub> H <sub>5</sub> ]/Gra                            | 0.00 | Ni-N₄[C≡CC <sub>6</sub> H₅]/Gra                                         | 0.56 |
| Fe-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | 1.44                                                | Co-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | 0.00 | Ni-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra   | 0.56 |
| Fe-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                              | 0.00                                                | Co-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                              | 0.56 | Ni-N4[NHC <sup>Me</sup> ]/Gra                                           | 0.00 |
| Fe-N <sub>4</sub> [F]/Gra                                               | 2.56                                                | Co-N <sub>4</sub> [F]/Gra                                               | 0.00 | Ni-N <sub>4</sub> [F]/Gra                                               | 0.56 |
| Fe-N4[F]/Gra                                                            | 1.44                                                | Co-N4[Cl]/Gra                                                           | 0.00 | Ni-N4[Cl]/Gra                                                           | 0.56 |



Figure S8. Correlation between the limiting potential ( $U_L$ ) and the d-band center gap ( $\Delta d$ ) on Fe-N<sub>4</sub>L/Gra (a), Co-N<sub>4</sub>L/Gra (b) and Ni-N<sub>4</sub>L/Gra (c).





Figure S9. Projected density of states (PDOS) of Fe-N<sub>4</sub>L/Gra (a-i), Co-N<sub>4</sub>L/Gra (j-r) and Ni-

 $N_4L/Gra\ (s-y).$  The Fermi level is set to 0 eV and denoted by vertical dotted line.

| Fe-N <sub>4</sub> L/Gra                                                 |        | Co-N <sub>4</sub> L/Gra                                                 |        | Ni-N₄L/Gra                                                              |        |
|-------------------------------------------------------------------------|--------|-------------------------------------------------------------------------|--------|-------------------------------------------------------------------------|--------|
| Fe-N <sub>4</sub> /Gra                                                  | 1.80   | Co-N <sub>4</sub> /Gra                                                  | 0.65   | Ni-N <sub>4</sub> /Gra                                                  | 0.0076 |
| Fe-N <sub>4</sub> [OH]/Gra                                              | 1.00   | Co-N <sub>4</sub> [OH]/Gra                                              | 0.0028 | Ni-N4[OH]/Gra                                                           | 0.31   |
| Fe-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | 0.97   | Co-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | 0.0072 | Ni-N <sub>4</sub> [CH <sub>3</sub> ]/Gra                                | 0.34   |
| Fe-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | 0.84   | Co-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | 0.0035 | Ni-N <sub>4</sub> [SCH <sub>2</sub> CH <sub>3</sub> ]/Gra               | 0.20   |
| Fe-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | 0.0031 | Co-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | 0.41   | Ni-N <sub>4</sub> [P(C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> ]/Gra | 0.0027 |
| Fe-N4[COOH]/Gra                                                         | 0.82   | Co-N4[COOH]/Gra                                                         | 0.0073 | Ni-N4[COOH]/Gra                                                         | 0.40   |

Table S9. The d-band center gap of spin state ( $\Delta d$ ) of M-N<sub>4</sub>L/Gra. (The unit is eV).

| Fe-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                              | 0.87   | Co-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                              | 0.0043 | Ni-N <sub>4</sub> [NH <sub>2</sub> ]/Gra                              | 0.24   |
|-----------------------------------------------------------------------|--------|-----------------------------------------------------------------------|--------|-----------------------------------------------------------------------|--------|
| Fe-N <sub>4</sub> [C=CC <sub>6</sub> H <sub>5</sub> ]/Gra             | 0.81   | Co-N <sub>4</sub> [C=CC <sub>6</sub> H <sub>5</sub> ]/Gra             | 0.0015 | Ni-N <sub>4</sub> [C=CC <sub>6</sub> H <sub>5</sub> ]/Gra             | 0.41   |
| Fe-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra | 1.42   | Co-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra | 0.0043 | Ni-N <sub>4</sub> [C <sub>6</sub> H <sub>7</sub> O <sub>7</sub> ]/Gra | 0.23   |
| Fe-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                            | 0.0026 | Co-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                            | 0.55   | Ni-N <sub>4</sub> [NHC <sup>Me</sup> ]/Gra                            | 0.0031 |
| Fe-N <sub>4</sub> [F]/Gra                                             | 2.26   | Co-N <sub>4</sub> [F]/Gra                                             | 0.0033 | Ni-N <sub>4</sub> [F]/Gra                                             | 0.33   |
| Fe-N <sub>4</sub> [Cl]/Gra                                            | 1.50   | Co-N <sub>4</sub> [Cl]/Gra                                            | 0.0046 | Ni-N <sub>4</sub> [Cl]/Gra                                            | 0.23   |



Figure S10. In the AIMD simulation, the temperature and potential energy curve with time for 3 ps under 300 K with a time step of 1 fs for Fe-N<sub>4</sub>[OH]/Gra (a), Fe-N<sub>4</sub>[P(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>]/Gra (b), Co-

N<sub>4</sub>[OH]/Gra (c), Co-N<sub>4</sub>[P(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>]/Gra (d), Ni-N<sub>4</sub>[OH]/Gra (e), and Ni-N<sub>4</sub>[NH<sub>2</sub>]/Gra (f). Here, the

relative energy of the initial configuration is set to zero for reference.