Supplementary Information for:

Highly enhanced visible light photodetection properties of ZnO phototransistor via solution processed thin Al₂O₃ additional layer

Jun Hyung Jeong^{a,b}, Jae Seung Shin^{a,b}, Jin Hyun Ma^{a,b}, Seong Jae Kang^a, Seong Jun Kang^{a,b,*}

a Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee

University, Yongin 17101, Republic of Korea

b Integrated Education Program for Frontier Materials (BK21 Four), Kyung Hee University,

Yongin 17104, Republic of Korea

Figure S1. a) $I_D - V_G$ characteristic of Si/SiO₂/Al₂O₃ structured thin film transistor under 520 and 405 nm wavelength light exposure and without illumination at $V_D = 10$ V. b) $I_D - V_D$ characteristic of Si/SiO₂/Al₂O₃ structured thin film transistor under 520 and 405 nm wavelength light exposure and without illumination. V_D was swept from – 10 to 10 V.

Figure S2. XPS spectra of Zn 2p for Al_2O_3/ZnO and ZnO films.

Figure S3. XPS spectra of Si 2p for Si/SiO₂/Al₂O₃ film.

Figure S4. XPS spectra of N 1s for Al₂O₃ film.

Figure S5. Near valence region spectra of UPS for Al_2O_3/ZnO and ZnO films.

Figure S6. Tauc's plot of Al_2O_3/ZnO and Al_2O_3 films.