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1. Generation of SALCs and SAMOs
The Reducible Representation (RR), Γred, is obtained by applying the symmetry operations of the 
point group on the p atomic orbitals localized on every atomic sites. The atomic orbitals that remain 
on their atomic sites upon a symmetry operation contribute with +1 on the diagonal of the Γred matrix 
while the atomic orbitals which retain their position but change their phase upon the symmetry 
operation contribute with -1. The atomic orbitals which exchange their position with another upon a 
symmetry operation contributes with 0 on the diagonal of the Γred matrix.
The following reduction of Γred in terms of the irreducible representations (iRRs) of the group is 
obtained employing the following formula:

𝑛𝛼 =
1
𝑔∑̂

𝑅

Θ𝛼(𝑅̂)Θ ∗
𝑟𝑒𝑑(𝑅̂) (S1.1)

in which  is the order of the group, α is the iRR,  is the character of the  iRR,  is the character 𝑔 Θ𝛼 Θ𝑟𝑒𝑑

of the RR (Γred). The sum runs over the symmetry operators, , of the group.𝑅̂
The Symmetry Adapted Linear Combinations (SALCs) are constructed by applying the projection 

operator ( ) on the atomic orbitals .  is defined by the following expression:𝑃̂𝛼 𝜒𝑖 𝑃̂𝛼

𝑃̂𝛼 = ∑̂
𝑅

Θ𝛼(𝑅̂)𝑂̂𝑅̂ (S1.2)

In which  is the symmetry operator, associated with the iRR α.  operates on all the non-symmetry 𝑂̂𝑅̂ 𝑃̂𝛼

equivalent atomic orbitals. 
The generation of the Symmetry Adapted Molecular Orbitals (SAMOs) is carried out within the 
Hückel approximation[1-4]. If the α iRR appears only once in the Γred the α-SAMO coincides with 
the resulting α-SALC, whereas if the α iRR appears n times in Γred (with n > 1) the set of α-SAMOs 
is obtained through the linear combinations of the n α-SALCs. In this latter case, the proper linear 
combinations can be found by building and diagonalizing a SALC based Hückel Hamiltonian, which 
is symmetry factorized considering that only the SALCs belonging to the same iRR can interact. Each 

matrix element is evaluated within the Hückel approximation, i.e.  the site energy, ⟨𝜒𝑖│Η̂│𝜒𝑖⟩ = 𝛼

 the resonance integral (different from zero only with  and  connected atomic site) ⟨𝜒𝑖│𝐻̂│𝜒𝑗⟩ = 𝛽 𝜒𝑖 𝜒𝑗

and , with  the Kronecker’s delta. ⟨𝜒𝑖│𝜒𝑗⟩ = 𝛿𝑖𝑗 𝛿𝑖𝑗

The diagonal elements of the Hückel secular determinant are α-E and the off-diagonal are β. By 
dividing all the elements of the determinant by β and calling , the Hückel determinant x = (α - E) β
(not considering the heteroatoms) can be written as follows:
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|𝛼 ‒ 𝐸 𝛽 0 ⋯
𝛽 𝛼 ‒ 𝐸 𝛽 ⋯
0 𝛽 𝛼 ‒ 𝐸 ⋯
⋮ ⋮ ⋮ ⋱

|→|𝑥 1 0 ⋯
1 𝑥 1 ⋯
0 1 𝑥 ⋯
⋮ ⋮ ⋮ ⋱

| (S1.3)

Note that the site energy and the resonance integral involving a N atom will acquire the form 
 and , respectively, in which h and k are coefficients empirically determined. 𝛼𝑁 = 𝛼𝐶 + ℎ𝛽 𝛽𝑁 = 𝑘𝛽𝐶

It follows that the x term associated with the N atom will be written as:

𝑥𝑁 =
𝛼𝑁 ‒ 𝐸

𝛽
=

𝛼 + ℎ𝛽 ‒ 𝐸
𝛽

=
𝛼 ‒ 𝐸

𝛽
+

ℎ𝛽
𝛽

= 𝑥 + ℎ (S1.4)

In our case, following the literature[5], the h and k will be set to 1.5 and 0.8, respectively, 
corresponding to the values used for the N atom of the pyrrole.  

1.1D3h point group 

1.1.1: The cyclazine case

The following section is related to the symmetry analysis and the generation of the SALCs and 

SAMOs of the  and  iRR of the D3h point group, by considering the sole p-type orbitals of the C 𝑎''
1 𝑎''

2

atoms and N central atom of the cyclazine-like structure.

(a) (b)

Figure S1: a) cyclazine structure; b) definition of the p atomic orbitals of the triangulene systems 
considered in the analysis.

Table S1: character table of D3h point group

D3h E 2C3 (z) 3C'2 σh(xy) 2S3 3σv
linear functions,

rotations
A'1 +1 +1 +1 +1 +1 +1 -
A'2 +1 +1 -1 +1 +1 -1 Rz
E' +2 -1 0 +2 -1 0 (x, y)

A''1 +1 +1 +1 -1 -1 -1 -
A''2 +1 +1 -1 -1 -1 +1 z
E'' +2 -1 0 -2 +1 0 (Rx, Ry)



The application of the symmetry operations to the cyclazine core (see Figure S1) results in the 
following RR:

Γ
𝐷3ℎ
𝑟𝑒𝑑 = (13,1,1 ‒ 1, ‒ 1, ‒ 1, ‒ 13, ‒ 1, ‒ 1,1,1,1)

which then is reduced by means of eq.S1.1 resulting in the following direct sum of the iRRs:

Γ
𝐷3ℎ
𝑟𝑒𝑑 = 𝑎''

1 ⊕ 4𝑎''
2 ⊕ 4𝑒''

Because of the high symmetry point group of the cyclazine molecule, the projection operator of the 
different IRRs has to be applied onto a limited number of atomic orbitals, namely , ,  and .𝜒1 𝜒2 𝜒3 𝜒13

The application of the  projection operator generates one sole SALC, identified with the label , 𝑎''
1 𝜓

𝑎''
1

1

bearing a non-bonding character.

𝑃̂
𝑎''

1𝜒1 = 𝜒1 + 𝜒9 + 𝜒5 ‒ 𝜒1 ‒ 𝜒9 ‒ 𝜒5 + 𝜒1 + 𝜒9 + 𝜒5 ‒ 𝜒1 ‒ 𝜒9 ‒ 𝜒5 = 0

𝑃̂
𝑎''

1𝜒2 = 𝜒2 + 𝜒10 + 𝜒6 ‒ 𝜒12 ‒ 𝜒8 ‒ 𝜒4 + 𝜒2 + 𝜒10 + 𝜒6 ‒ 𝜒12 ‒ 𝜒8 ‒ 𝜒4→

→𝑃̂
𝑎''

1𝜒2 = 𝜓
𝑎''

1
1 = 1 6(𝜒2 + 𝜒10 + 𝜒6 ‒ 𝜒12 ‒ 𝜒8 ‒ 𝜒4)

𝑃̂
𝑎''

1𝜒3 = 𝜒3 + 𝜒11 + 𝜒7 ‒ 𝜒3 ‒ 𝜒11 ‒ 𝜒7 + 𝜒3 + 𝜒11 + 𝜒7 ‒ 𝜒3 ‒ 𝜒11 ‒ 𝜒7 = 0

𝑃̂
𝑎''

1𝜒13 = 𝜒13 + 𝜒13 + 𝜒13 ‒ 𝜒13 ‒ 𝜒13 ‒ 𝜒3 + 𝜒13 + 𝜒13 + 𝜒13 ‒ 𝜒13 ‒ 𝜒13 ‒ 𝜒13 = 0

The application of the  projection operator generates the following four SALCs:𝑎''
2

𝑃̂
𝑎''

2𝜒1 = 𝜒1 + 𝜒9 + 𝜒5 + 𝜒1 + 𝜒9 + 𝜒5 + 𝜒1 + 𝜒9 + 𝜒5 + 𝜒1 + 𝜒9 + 𝜒5→
→𝜙1 = 1 3(𝜒1 + 𝜒9 + 𝜒5)

𝑃̂
𝑎''

2𝜒2 = 𝜒2 + 𝜒10 + 𝜒6 + 𝜒12 + 𝜒8 + 𝜒4 + 𝜒2 + 𝜒10 + 𝜒6 + 𝜒12 + 𝜒8 + 𝜒4→
→𝜙2 = 1 6(𝜒2 + 𝜒10 + 𝜒6 + 𝜒12 + 𝜒8 + 𝜒4)

𝑃̂
𝑎''

2𝜒3 = 𝜒3 + 𝜒11 + 𝜒7 + 𝜒3 + 𝜒11 + 𝜒7 + 𝜒3 + 𝜒11 + 𝜒7 + 𝜒3 + 𝜒11 + 𝜒7→
→𝜙3 = 1 3(𝜒3 + 𝜒11 + 𝜒7)

𝑃̂
𝑎''

2𝜒13 = 𝜒13 + 𝜒13 + 𝜒13 + 𝜒13 + 𝜒13 + 𝜒13→𝜙4 = 𝜒13

The  Hückel Hamiltonian is constructed by evaluating the matrix terms between each pair of the 𝑎''
2

 SALCs as explained at the beginning of this section. The resulting determinant is written in term 𝑎''
2

of x (see eq.S1.3)

det (𝑎''
2) = | 𝑥 2 0 0

2 𝑥 2 0
0 2 𝑥 0.36
0 0 0.36 𝑥 + 1.5

|



The diagonalization of the Hamiltonian leads to the following four linear combinations of SALCs, 

i.e. the -SAMOs:𝑎''
2

𝜓
𝑎''

2
1 = 0.448𝜙1 + 0.654𝜙2 + 0.507𝜙3 + 0.336𝜙4

𝜓
𝑎''

2
2 =‒ 0.257𝜙1 ‒ 0.273𝜙2 + 0.033𝜙3 + 0.926𝜙4

𝜓
𝑎''

2
3 =‒ 0.698𝜙1 + 0.021𝜙2 + 0.697𝜙3 ‒ 0.163𝜙4

𝜓
𝑎''

2
4 =‒ 0.496𝜙1 + 0.704𝜙2 ‒ 0.505𝜙3 + 0.052𝜙4

As explained in the main text, the highest occupied SAMO and lowest unoccupied SAMO, to be 
compared with the HOMO and LUMO of the triangulene compounds, are identified by ordering the 
SAMOs according to their energy and filling them with the electrons considered in the analysis (14 
electrons in our case). Consequently, we need to compute the energy associated with the -SAMOs 𝑒''

as well.
To find the SALCs and SAMOs associated with the 2D-iRR ( ) we can resort to the character table 𝑒''

of the C3 point group, noting that rotational symmetry of the SALCs is inherently dictated by the C3 
axis. Each resulting SALC pair (  and ), bearing imaginary coefficients, will be linearly combined 𝜑𝑎 𝜑𝑏

to obtain real SALCs:  and .𝜙 𝑒
1,1 = (𝜑𝑎 + 𝜑𝑏) 𝜙 𝑒

1,2 = (𝜑𝑎 ‒ 𝜑𝑏)/𝑖

Table S2: character table of C3 group. 
𝜀 = 𝑒𝑥𝑝⁡(

2𝜋𝑖
3

)

C3 E C3 (z) C - 1
3

linear functions,
rotations

A +1 +1 +1 z, Rz

+1 +ε +ε* x+iy; Rx+iRyE +1  +ε* +ε x-iy; Rx-iRy

The application of the  projection operator produces the following five pairs of complex SALCs 𝑒
(left), which then are linearly combined to give the real SALCs (right):

{𝑃̂𝑒𝜒1 = 𝜒1 + 𝜀𝜒9 + 𝜀 ∗ 𝜒5
𝑃̂𝑒𝜒1 = 𝜒1 + 𝜀 ∗ 𝜒9 + 𝜀𝜒5

� ⇒ {𝜙1,1 = 1 6(2𝜒1 ‒ 𝜒9 ‒ 𝜒5)
𝜙1,2 = 1 2(𝜒9 ‒ 𝜒5)            �

{𝑃̂𝑒𝜒2 = 𝜒2 + 𝜀𝜒10 + 𝜀 ∗ 𝜒6
𝑃̂𝑒𝜒2 = 𝜒2 + 𝜀 ∗ 𝜒10 + 𝜀𝜒6

� ⇒ {𝜙2,1 = 1 6(2𝜒2 ‒ 𝜒10 ‒ 𝜒6)
𝜙2,2 = 1 2(𝜒10 ‒ 𝜒6)            �

{𝑃̂𝑒𝜒3 = 𝜒3 + 𝜀𝜒11 + 𝜀 ∗ 𝜒7
𝑃̂𝑒𝜒3 = 𝜒3 + 𝜀 ∗ 𝜒11 + 𝜀𝜒7

� ⇒ {𝜙3,1 = 1 6(2𝜒3 ‒ 𝜒11 ‒ 𝜒7)
𝜙3,2 = 1 2(𝜒11 ‒ 𝜒7)            �

{𝑃̂𝑒𝜒4 = 𝜒4 + 𝜀𝜒12 + 𝜀 ∗ 𝜒8
𝑃̂𝑒𝜒4 = 𝜒4 + 𝜀 ∗ 𝜒12 + 𝜀𝜒8

� ⇒ {𝜙4,1 = 1 6(2𝜒4 ‒ 𝜒12 ‒ 𝜒8)
𝜙4,2 = 1 2(𝜒12 ‒ 𝜒8)            �

{𝑃̂𝑒𝜒13 = 𝜒13 + 𝜀𝜒13 + 𝜀 ∗ 𝜒13
𝑃̂𝑒𝜒13 = 𝜒13 + 𝜀 ∗ 𝜒13 + 𝜀𝜒13

� ⇒ {𝜙13,1 = 2𝜒13 ‒ 𝜒13 ‒ 𝜒13 = 0
𝜙13,2 = 𝜒13 ‒ 𝜒13 = 0              �

We obtain two determinants, one in terms of  and the other in terms of  SALCs:𝜙𝑖,1 𝜙𝑖,2



det (𝑒)𝑖,1 = | 𝑥 1 0 1/6
1 𝑥 1 0
0 1 𝑥 1

1/6 0 1 𝑥
| det (𝑒)𝑖,2 = | 𝑥 1 0 ‒ 1/2

1 𝑥 1 0
0 1 𝑥 1

‒ 1/2 0 1 𝑥
|

We need to solve just one of them to find the eigenvalues and order all the SAMOs according to their 
energy. At the end, we obtain the following order:

Table S3: D3h eigenvalues; HOMO and LUMO define the highest occupied and lowest unoccupied 
SAMOs, respectively.

Eigenvalue Eigenvector (SAMO)

2.044 𝜓
𝑎1
1

1.666 𝜓𝑒
1

1.487 𝜓
𝑎1
2

0.500 𝜓𝑒
2

0.000 𝜓
𝑎2
1 HOMO

-0.042 𝜓
𝑎1
3 LUMO

-0.500 𝜓𝑒
3

-1.666 𝜓𝑒
4

-1.989 𝜓
𝑎2
4

1.1.2 D3h symmetry compounds

Table S4: S1 and T1 excitation energies computed at SCS-CC2/def2-TZVP and NEVPT2/def2-TZVP 
for the D3h symmetry compounds.

SCS-CC2 NEVPT2 (8,8)
S1 (fOSC)

 [eV]
T1 

[eV]
ΔEST 
[eV]

S1 (fOSC) 
[eV]

T1 
[eV]

ΔEST 
[eV]

Cyclazine 1.11 (0.000) 1.33 -0.22 1.07 (0.000) 1.19 -0.12
2T-B 0.89 (0.000) 1.17 -0.28 0.82 (0.000) 1.02 -0.20
2T-B-3N 1.64 (0.000) 2.09 -0.45 1.84 (0.000) 2.02 -0.18
a4T-a 1.23 (0.000) 1.51 -0.28 0.83 (0.000) 1.09 -0.26
a4T-b 1.44 (0.144) 1.14 0.30 1.24 (0.202) 0.95 0.29

a From ref.16 in the main text (NEVPT2 with a 10,10 CAS).

HOMO ( )𝑎''
2 LUMO ( )𝑎''

1



Figure S2: HOMO and LUMO computed at HF/def2-TZVP for the B centred triangulene (isocontour 
σ=0.02 e·Bohr-3).

HOMO ( )𝑎''
2 LUMO ( )𝑎''

1

Figure S3: HOMO and LUMO computed at HF/def2-TZVP for the B-3N triangulene (isocontour 
σ=0.02 e·Bohr-3).

K = 0.172 eV
∆EST =  0.067 eV HOMO LUMO

Figure S4: HOMO and LUMO computed at HF/def2-TZVP level, exchange interaction, ∆EST 
computed at SCS-CC2/def2-TZVP level for 1,5,9-B-cyclazine (isocontour σ=0.02 e·Bohr-3).



Figure S5: inversion of the unoccupied orbitals energy order for the triangulene doped with nitrogen 
atoms.

D3h C2v
Figure S6: optimized geometry of the ground state (left) at B97-3c and S1 (right) at TD-PBE0/def2-
TZVP of the triangulene (b) in the main text.



Figure S7: HOMO and LUMO computed at HF/def2-TZVP, exchange interaction, ∆EST and oscillator 
strength computed at SCS-CC2/def2-TZVP for TABNA-1 (isocontour σ=0.02 e·Bohr-3).

The degeneracy of the HOMO orbitals leads to a larger overlap with the non-degenerate LUMO (
), with the following positive ∆EST = 0.167 eV at SCS-CC2 level (fosc = 0.189). The Λ𝐻𝐿 = 0.628

optimization of the S1 and S2 removes the degeneracy between the two excited states, with an increase 
of (adiabatic) ∆EST to 0.248 eV and a decrease of fosc to 0.164 for S1.



1.2 Point group C2v

The following section is related to the symmetry analysis and the generation of the SALCs and 
SAMOs of the  and  iRR of the C2v point group, by considering the sole p-type orbitals of the C 𝑎2 𝑎2

atoms and N central atom of the cyclazine-like structure.

Table S5: character table of C2v point group

C2v E C2 (z) σv(xz) σv(yz) linear functions,
rotations

A1 +1 +1 +1 +1 z
A2 +1 +1 -1 -1 Rz
B1 +1 -1 +1 -1 x, Ry
B2 +1 -1 -1 +1 y, Rx

The application of the symmetry operations to the molecular structure results in the following RR

Γ
𝐶2𝑣
𝑟𝑒𝑑 = (13, ‒ 3, ‒ 13,3)

which then is reduced by means of eq.S1.1 resulting in the following direct sum of the iRRs:

Γ
𝐶2𝑣
𝑟𝑒𝑑 = 8𝑏2 ⊕ 5𝑎2

The application of the  projection operator generates the following five SALCs:𝑎2

𝑃̂
𝑎2𝜒1 = 𝜒1 ‒ 𝜒1 + 𝜒1 ‒ 𝜒1 = 0

𝑃̂
𝑎2𝜒2 = 𝜒2 ‒ 𝜒12 + 𝜒2 ‒ 𝜒12 = 2(𝜒2 ‒ 𝜒12)→𝜙2 = 1 2(𝜒2 ‒ 𝜒12)

𝑃̂
𝑎2𝜒3 = 𝜒3 ‒ 𝜒11 + 𝜒3 ‒ 𝜒11 = 2(𝜒3 ‒ 𝜒11)→𝜙3 = 1 2(𝜒3 ‒ 𝜒11)

𝑃̂
𝑎2𝜒4 = 𝜒4 ‒ 𝜒10 + 𝜒4 ‒ 𝜒10 = 2(𝜒4 ‒ 𝜒10)→𝜙4 = 1 2(𝜒4 ‒ 𝜒10)
𝑃̂

𝑎2𝜒5 = 𝜒5 ‒ 𝜒9 + 𝜒5 ‒ 𝜒9 = 2(𝜒5 ‒ 𝜒9)→𝜙5 = 1 2(𝜒5 ‒ 𝜒9)
𝑃̂

𝑎2𝜒6 = 𝜒6 ‒ 𝜒8 + 𝜒6 ‒ 𝜒8 = 2(𝜒6 ‒ 𝜒8)→𝜙6 = 1 2(𝜒6 ‒ 𝜒8)
𝑃̂

𝑎2𝜒7 = 𝜒7 ‒ 𝜒7 + 𝜒7 ‒ 𝜒7 = 0

𝑃̂
𝑎2𝜒13 = 𝜒13 ‒ 𝜒13 + 𝜒13 ‒ 𝜒13 = 0

The resulting Hückel determinant, written in terms of x, is the following:

det (𝑎2) = |𝑥100
0

1
𝑥
1
0
0

0
1
𝑥
1
0

0
0
1
𝑥
1

0
0
0
1
𝑥

|
The diagonalization of the Hückel Hamiltonian results in the following linear combinations of -𝑎2

SALCs, i.e. the -SAMOs:𝑎2

𝜓
𝑎2
1 = 0.289𝜙2 + 0.5𝜙3 + 0.577𝜙4 + 0.5𝜙5 + 0.289𝜙6



𝜓
𝑎2
2 =‒ 0.5𝜙2 ‒ 0.5𝜙3 + 0.5𝜙5 + 0.5𝜙6

𝜓
𝑎2
3 = 0.577𝜙2 ‒ 0.577𝜙4 + 0.577𝜙6

𝜓
𝑎2
4 = 0.5𝜙2 ‒ 0.5𝜙3 + 0.5𝜙5 ‒ 0.5𝜙6

𝜓
𝑎2
5 =‒ 0.289𝜙2 + 0.5𝜙3 ‒ 0.577𝜙4 + 0.5𝜙5 ‒ 0.289𝜙6

The application of the  projection operator generates the following eight SALCs𝑏2

𝑃̂
𝑏2𝜒1 = 𝜒1 + 𝜒1 + 𝜒1 + 𝜒1 = 4𝜒1→𝜙1 = 𝜒1

𝑃̂
𝑏2𝜒2 = 𝜒2 + 𝜒12 + 𝜒2 + 𝜒12 = 2(𝜒2 + 𝜒12)→𝜙2 = 1 2(𝜒2 + 𝜒12)

𝑃̂
𝑏2𝜒3 = 𝜒3 + 𝜒11 + 𝜒3 + 𝜒11 = 2(𝜒3 + 𝜒11)→𝜙3 = 1 2(𝜒3 + 𝜒11)

𝑃̂
𝑏2𝜒4 = 𝜒4 + 𝜒10 + 𝜒4 + 𝜒10 = 2(𝜒4 + 𝜒10)→𝜙4 = 1 2(𝜒4 + 𝜒10)
𝑃̂

𝑏2𝜒5 = 𝜒5 + 𝜒9 + 𝜒5 + 𝜒9 = 2(𝜒5 + 𝜒9)→𝜙5 = 1 2(𝜒5 + 𝜒9)
𝑃̂

𝑏2𝜒6 = 𝜒6 + 𝜒8 + 𝜒6 + 𝜒8 = 2(𝜒6 + 𝜒8)→𝜙6 = 1 2(𝜒6 + 𝜒8)
𝑃̂

𝑏2𝜒7 = 𝜒7 + 𝜒7 + 𝜒7 + 𝜒7 = 4𝜒7→𝜙7 = 𝜒7

𝑃̂
𝑏2𝜒13 = 𝜒13 + 𝜒13 + 𝜒13 + 𝜒13 = 4𝜒13→𝜙5 = 𝜒13

The corresponding Hückel determinant is:

det (𝑏2) = |
𝑥 2 0 0 0 0 0 0
2 𝑥 1 0 0 0 0 0

0 1 𝑥 1 0 0 0 1.12
0 0 1 𝑥 1 0 0 0
0 0 0 1 𝑥 1 0 0
0 0 0 0 1 𝑥 2 0
0 0 0 0 0 2 𝑥 0.8
0 0 1.12 0 0 0 0.8 𝑥 + 1.5

|
The diagonalization of the Hückel Hamiltonian results in the following linear combinations of -𝑏2

SALCs, i.e. the eight -SAMOs𝐵2

𝜓
𝑏2
1 = 0.126𝜙1 + 0.241𝜙2 + 0.464𝜙3 + 0.242𝜙4 + 0.181𝜙5 + 0.241𝜙6 + 0.329𝜙7 + 0.673𝜙13

𝜓
𝑏2
2 =‒ 0.407𝜙1 ‒ 0.5𝜙2 ‒ 0.291𝜙3 + 0.291𝜙5 + 0.5𝜙6 + 0.407𝜙7

𝜓
𝑏2
3 = 0.324𝜙1 + 0.334𝜙2 + 0.026𝜙3 + 0.346𝜙4 + 0.472𝜙5 + 0.334𝜙6 + 0.006𝜙7 ‒ 0.573𝜙13

𝜓
𝑏2
4 =‒ 0.414𝜙1 ‒ 0.294𝜙2 + 0.288𝜙3 + 0.571𝜙4 + 0.280𝜙5 ‒ 0.294𝜙6 ‒ 0.408𝜙7 + 0.008𝜙13

𝜓
𝑏2
5 =‒ 0.384𝜙1 + 0.125𝜙2 + 0.481𝜙3 + 0.119𝜙4 ‒ 0.535𝜙5 + 0.125𝜙6 + 0.341𝜙7 ‒ 0.415𝜙13

𝜓
𝑏2
6 = 0.408𝜙1 ‒ 0.289𝜙2 ‒ 0.283𝜙3 + 0.576𝜙4 ‒ 0.288𝜙5 ‒ 0.289𝜙6 + 0.412𝜙7 ‒ 0.005𝜙13

𝜓
𝑏2
7 = 0.407𝜙1 ‒ 0.5𝜙2 + 0.291𝜙3 ‒ 0.291𝜙5 + 0.5𝜙6 ‒ 0.407𝜙7

𝜓
𝑏2
8 =‒ 0.248𝜙1 + 0.380𝜙2 ‒ 0.469𝜙3 + 0.384𝜙4 ‒ 0.356𝜙5 + 0.380𝜙6 ‒ 0.328𝜙7 + 0.216𝜙13



The identification of the highest occupied SAMO and lowest unoccupied SAMO is done by ordering 
the  and  SAMOs by their energy and filling them with the 14 electrons.𝑎2 𝑏2

Table S6: C2v eigenvalues; HOMO and LUMO define the highest occupied and lowest unoccupied 
SAMOs, respectively.

Eigenvalue Eigenvector (SAMO)

2.663 𝜓
𝑏2
1

1.732 𝜓
𝑎2
1

1.720 𝜓
𝑏2
2

1.440 𝜓
𝑏2
3

1.000 𝜓
𝑎2
2

0.993 𝜓
𝑏2
4

0.000 𝜓
𝑎2
3 HOMO

-0.457 𝜓
𝑏2
5 LUMO

-0.993 𝜓
𝑏2
6

-1.000 𝜓
𝑎2
4

-1.720 𝜓
𝑏2
7

-1.732 𝜓
𝑎2
5

-2.416 𝜓
𝑏2
8



1.2.1 C2v symmetry compounds

Table S7: S1 and T1 excitation energies computed at SCS-CC2/def2-TZVP and NEVPT2/def2-TZVP 
for the C2v symmetry compounds.

SCS-CC2 NEVPT2 (8,8)
S1 (fOSC) 

[eV]
T1 

[eV]
ΔEST
[eV]

S1 (fOSC) 
[eV]

T1 
[eV]

ΔEST
[eV]

2T-2N 0.95 ( )7.89 ∙ 10 - 4 1.13 -0.18 0.96 ( )7.15 ∙ 10 - 4 1.08 -0.12
2T-B-N 1.13 ( )1.67 ∙ 10 - 3 1.42 -0.29 1.07 ( )1.44 ∙ 10 - 3 1.25 -0.18
5AP 2.30 ( )3.11 ∙ 10 - 3 2.54 -0.24 2.26 (0.026) 2.35 -0.09

HOMO LUMO

Figure S8: symmetry adapted HOMO ( ) and LUMO ( ) of C2v point group.𝜓
𝑎2
3 𝜓

𝑏2
5



HOMO LUMO

Figure S9: HOMO and LUMO orbital of 5AP obtained within the Hückel approximation.

Figure S10: HOMO and LUMO computed at HF/def2-TZVP, exchange interaction, ∆EST and oscillator 
strength computed at SCS-CC2/def2-TZVP for DABNA-1 (isocontour σ=0.02 e·Bohr-3).

The extension of the HOMO and LUMO over the bonds leads to a larger HOMO-LUMO overlap (
) with the consequent high exchange interaction and positive ∆EST

𝑆𝐻𝐿 = 0.609



1.3 Point group C3h

The following section is related to the symmetry analysis and the generation of the SALCs and 
SAMOs of the  iRR of the C3h point group, by considering the sole p-type orbitals of the C atoms 𝑎''

and N central atom of the cyclazine-like structure.

Table S8: character table of C3h point group. 
𝜀 = 𝑒𝑥𝑝⁡(

2𝜋𝑖
3

)

C3h E C3(z) (C3)2 σh S3 (S3)5 linear functions,
rotations

A' +1 +1 +1 +1 +1 +1 Rz

E' +1
+1

+ε
+ε*

+ε*

+ε
+1
+1

+ε
+ε*

+ε*
+ε

x+iy
x-iy

A'' +1 +1 +1 -1 -1 -1 z

E'' +1
+1

+ε
+ε*

+ε*

+ε
-1
-1

-ε
-ε*

-ε*

-ε
Rx+iRy
Rx-iRy

The application of the symmetry operations to the molecular structure results in the following RR

Γ
𝐶3ℎ
𝑟𝑒𝑑 = (13,1, ‒ 1, ‒ 13, ‒ 1, ‒ 1)

which then is reduced by means of eq.S1.1 resulting in the following direct sum of the iRRs:

Γ
𝐶3ℎ
𝑟𝑒𝑑 = 5𝑎'' ⊕ 4𝑒''

The application of the  projection operator generates the following five SALCs:𝐴''

𝑃̂𝑎''
𝜒1 = 𝜒1 + 𝜒9 + 𝜒5 + 𝜒1 + 𝜒9 + 𝜒5→𝜙1 = 1 3(𝜒1 + 𝜒5 + 𝜒9)

𝑃̂𝑎''
𝜒2 = 𝜒2 + 𝜒10 + 𝜒6 + 𝜒2 + 𝜒10 + 𝜒6→𝜙2 = 1 3(𝜒2 + 𝜒6 + 𝜒10)

𝑃̂𝑎''
𝜒3 = 𝜒3 + 𝜒11 + 𝜒7 + 𝜒3 + 𝜒11 + 𝜒7→𝜙3 = 1 3(𝜒3 + 𝜒7 + 𝜒11)

𝑃̂𝑎''
𝜒4 = 𝜒4 + 𝜒12 + 𝜒8 + 𝜒4 + 𝜒12 + 𝜒8→𝜙4 = 1 3(𝜒4 + 𝜒8 + 𝜒12)

𝑃̂
𝑎2𝜒13 = 6𝜒13→𝜙13 = 𝜒13

with the resulting Hückel determinant, written in terms of x:



det (𝑎'') = |𝑥100
0

1
𝑥
1
0
0

0
1
𝑥
1

1.36

0
0
1
𝑥
0

0
0

1.36
0

𝑥 + 1.5
|

The diagonalization of the Hückel Hamiltonian produces the following linear combinations of -𝑎''

SALCs, i.e. the file -SAMOs:𝑎''

𝜓𝑎''
1 = 0.103𝜙1 + 0.264𝜙2 + 0.577𝜙3 + 0.224𝜙4 + 0.732𝜙13

𝜓𝑎''
2 = 0.584𝜙1 + 0.647𝜙2 + 0.132𝜙3 + 0.119𝜙4 ‒ 0.456𝜙13

𝜓𝑎''
3 =‒ 0.364𝜙1 ‒ 0.144𝜙2 + 0.308𝜙3 + 0.780𝜙4 ‒ 0.378𝜙13

𝜓𝑎''
4 = 0.662𝜙1 ‒ 0.477𝜙2 ‒ 0.318𝜙3 + 0.441𝜙4 + 0.195𝜙13

𝜓𝑎''
5 =‒ 0.277𝜙1 + 0.512𝜙2 ‒ 0.673𝜙3 + 0.363𝜙4 + 0.273𝜙13

Note that in this case, the identification of the highest occupied and lowest unoccupied SAMO is not 
necessary because none of the five SAMOs is reminiscent of the orbital localization obtained at D3h 
and C2v level, thus none of them is compatible with the orbital pattern minimizing the exchange 
interaction. 

1.3.1 C3h symmetry compounds

Table S9: S1 and T1 excitation energies computed at SCS-CC2/def2-TZVP and NEVPT2/def2-TZVP 
for the C3h symmetry compounds.

SCS-CC2 NEVPT2 (8,8)
S1 (fOSC)

 [eV]
T1 

[eV]
ΔEST
[eV]

S1 (fOSC) 
[eV]

T1 
[eV]

ΔEST
[eV]

2T-N-3NH2 1.86 (0.000) 1.39 0.47 1.49 (0.001) 1.22 0.27
aTriazacyclazine 2.26 (0.000) 2.34 -0.08 2.14 (0.000) 2.19 -0.05

a From Ref.13 in the main text (NEVPT2 with a 6,6 CAS).



HOMO LUMO

Figure S11: HOMO and LUMO of the C3h cyclazine computed at HF/def2-TZVP level (isocontour 
σ=0.02 e·Bohr-3).

K = 0.342 eV
∆ESCS - CC2

ST =  - 0.084 eV

fSCS - CC2
OSC = 0 

∆ENEVPT2
ST =  - 0.082 eV

fNEVPT2
OSC = 0 

HOMO ( )𝑎''
LUMO ( )𝑎''

Figure S12: HOMO and LUMO computed at HF/def2-TZVP level (isocontour σ=0.02 e·Bohr-3), 
exchange interaction, ∆EST and oscillator strength computed at SCS-CC2/def2-TZVP level for 
triazacyclazine .



1.4 Point group C3v

The following section is related to the symmetry analysis and the generation of the SALCs and 
SAMOs of the  and  iRR of the C3h point group, by considering the sole p-type orbitals of the C 𝑎1 𝑎2

atoms and N central atom of the cyclazine-like structure.

Table S10: character table of C3v point group.

C3v E 2C3 (z) 3σv
linear functions,

rotations
A1 +1 +1 +1 z
A2 +1 +1 -1 Rz
E +2 -1 0 (x, y) (Rx, Ry)

The application of the symmetry operations to the molecular structure results in the following RR

Γ
𝐶3𝑣
𝑟𝑒𝑑(13,1,1,3,3,3)

which then is reduced by means of eq.S1.1 resulting in the following direct sum of the iRRs:

Γ
𝐶3𝑣
𝑟𝑒𝑑 = 4𝑎1 ⊕ 𝑎2 ⊕ 4𝑒

The application of the  projection operator generates the sole  SALC:𝑎2 𝜓
𝑎2
2

𝑃̂
𝑎2𝜒1 = 𝜒1 + 𝜒9 + 𝜒5 ‒ 𝜒1 ‒ 𝜒9 ‒ 𝜒5 = 0

𝑃̂
𝑎2𝜒2 = 𝜒2 + 𝜒10 + 𝜒6 ‒ 𝜒12 ‒ 𝜒4 ‒ 𝜒8→𝜓

𝑎2
1 = 1 6(𝜒2 + 𝜒10 + 𝜒6 ‒ 𝜒12 ‒ 𝜒4 ‒ 𝜒8)

𝑃̂
𝑎2𝜒3 = 𝜒3 + 𝜒11 + 𝜒7 ‒ 𝜒3 ‒ 𝜒11 ‒ 𝜒7 = 0



𝑃̂
𝑎2𝜒13 = 𝜒13 + 𝜒13 + 𝜒13 ‒ 𝜒13 ‒ 𝜒13 ‒ 𝜒13 = 0

On the contrary, the application of the  projection operator generates four SALCs:𝑎1

𝑃̂
𝑎1𝜒1 = 𝜒1 + 𝜒9 + 𝜒5 + 𝜒1 + 𝜒9 + 𝜒5→𝜙1 = 1 3(𝜒1 + 𝜒5 + 𝜒9)

𝑃̂
𝑎1𝜒2 = 𝜒2 + 𝜒10 + 𝜒6 + 𝜒12 + 𝜒4 + 𝜒8→𝜙2 = 1 6(𝜒2 + 𝜒10 + 𝜒6 + 𝜒12 + 𝜒4 + 𝜒8)

𝑃̂
𝑎1𝜒3 = 𝜒3 + 𝜒11 + 𝜒7 + 𝜒3 + 𝜒11 + 𝜒7→𝜙3 = 1 3(𝜒3 + 𝜒11 + 𝜒7)

𝑃̂
𝑎1𝜒13 = 𝜒13 + 𝜒13 + 𝜒13 + 𝜒13 + 𝜒13 + 𝜒13→𝜙4 = 𝜒13

with the resulting Hückel determinant, written in terms of x:

det (𝑎1) = | 𝑥 2 0 0
2 𝑥 2 0

0 2 𝑥 0.36
0 0 0.36 𝑥 + 1.5

|
The diagonalization of the Hückel Hamiltonian produces the following linear combinations of -𝑎1

SALCs, i.e. the file -SAMOs:𝑎1

𝜓
𝑎1
1 = 0.448𝜙1 + 0.654𝜙2 + 0.507𝜙3 + 0.336𝜙4

𝜓
𝑎1
2 =‒ 0.257𝜙1 ‒ 0.273𝜙2 + 0.033𝜙3 + 0.926𝜙4

𝜓
𝑎1
3 =‒ 0.698𝜙1 + 0.021𝜙2 + 0.697𝜙3 ‒ 0.163𝜙4

𝜓
𝑎1
4 =‒ 0.496𝜙1 + 0.704𝜙2 ‒ 0.505𝜙3 + 0.052𝜙4

As we did for the D3h point group, we need to find the eigenvalues related to the 2D iRR SAMOs to 
identify the highest occupied SAMO and lowest unoccupied SAMO. To find the SALCs and SAMOs 
associated with the 2D-iRR ( ) we can resort to the character table of the C3 point group, noting that 𝑒''

rotational symmetry of the SALCs is inherently dictated by the C3 axis Each resulting SALC pair (
 and ), bearing imaginary coefficients, will be linearly combined to obtain real SALCs: 𝜑𝑎 𝜑𝑏

 and .𝜙 𝑒
1,1 = (𝜑𝑎 + 𝜑𝑏) 𝜙 𝑒

1,2 = (𝜑𝑎 ‒ 𝜑𝑏)/𝑖

Table S11: character table of C3 group. 
𝜀 = 𝑒𝑥𝑝⁡(

2𝜋𝑖
3

)

C3 E C3 (z) C - 1
3

linear functions,
rotations

A +1 +1 +1 z, Rz

+1 +ε +ε* x+iy; Rx+iRyE +1  +ε* +ε x-iy; Rx-iRy

The application of the  projection operator produces the following five pairs of complex SALCs 𝑒
(left), which then are linearly combined to give the real SALCs (right):



{𝑃̂𝑒𝜒1 = 𝜒1 + 𝜀𝜒9 + 𝜀 ∗ 𝜒5
𝑃̂𝑒𝜒1 = 𝜒1 + 𝜀 ∗ 𝜒9 + 𝜀𝜒5

� ⇒ {𝜙1,1 = 1 6(2𝜒1 ‒ 𝜒9 ‒ 𝜒5)
𝜙1,2 = 1 2(𝜒9 ‒ 𝜒5)            �

{𝑃̂𝑒𝜒2 = 𝜒2 + 𝜀𝜒10 + 𝜀 ∗ 𝜒6
𝑃̂𝑒𝜒2 = 𝜒2 + 𝜀 ∗ 𝜒10 + 𝜀𝜒6

� ⇒ {𝜙2,1 = 1 6(2𝜒2 ‒ 𝜒10 ‒ 𝜒6)
𝜙2,2 = 1 2(𝜒10 ‒ 𝜒6)            �

{𝑃̂𝑒𝜒3 = 𝜒3 + 𝜀𝜒11 + 𝜀 ∗ 𝜒7
𝑃̂𝑒𝜒3 = 𝜒3 + 𝜀 ∗ 𝜒11 + 𝜀𝜒7

� ⇒ {𝜙3,1 = 1 6(2𝜒3 ‒ 𝜒11 ‒ 𝜒7)
𝜙3,2 = 1 2(𝜒11 ‒ 𝜒7)            �

{𝑃̂𝑒𝜒4 = 𝜒4 + 𝜀𝜒12 + 𝜀 ∗ 𝜒8
𝑃̂𝑒𝜒4 = 𝜒4 + 𝜀 ∗ 𝜒12 + 𝜀𝜒8

� ⇒ {𝜙4,1 = 1 6(2𝜒4 ‒ 𝜒12 ‒ 𝜒8)
𝜙4,2 = 1 2(𝜒12 ‒ 𝜒8)            �

{𝑃̂𝑒𝜒13 = 𝜒13 + 𝜀𝜒13 + 𝜀 ∗ 𝜒13
𝑃̂𝑒𝜒13 = 𝜒13 + 𝜀 ∗ 𝜒13 + 𝜀𝜒13

� ⇒ {𝜙13,1 = 2𝜒13 ‒ 𝜒13 ‒ 𝜒13 = 0
𝜙13,2 = 𝜒13 ‒ 𝜒13 = 0              �

We obtain two determinants, one in terms of  and the other in terms of  SALCs:𝜙𝑖,1 𝜙𝑖,2

det (𝑒)𝑖,1 = | 𝑥 1 0 1/6
1 𝑥 1 0
0 1 𝑥 1

1/6 0 1 𝑥
| det (𝑒)𝑖,2 = | 𝑥 1 0 ‒ 1/2

1 𝑥 1 0
0 1 𝑥 1

‒ 1/2 0 1 𝑥
|

We need to solve just one of them to find the eigenvalues and order all the SAMOs according to their 
energy. At the end, we obtain the following order:

Table S12: C3v eigenvalues.

Eigenvalue Eigenvector (SAMO)

2.044 𝜓
𝑎1
1

1.666 𝜓𝑒
1

1.487 𝜓
𝑎1
2

0.500 𝜓𝑒
2

0.000 𝜓
𝑎2
1 HOMO

-0.042 𝜓
𝑎1
3 LUMO

-0.500 𝜓𝑒
3

-1.666 𝜓𝑒
4

-1.989 𝜓
𝑎2
4

1.4.1 C3v symmetry compound



Table S13: S1 and T1 excitation energies computed at SCS-CC2/def2-TZVP and NEVPT2/def2-
TZVP for the C3v symmetry compound based on the B97-3c geometry.

SCS-CC2 NEVPT2 (8,8)
S1 (fOSC) 

[eV]
T1 

[eV]
ΔEST
[eV]

S1 (fOSC) 
[eV]

T1 
[eV]

ΔEST
[eV]

2T-P 1.14 (0.000) 1.32 -0.18 1.16 (0.000) 1.25 -0.09

R1= NH2, R2 = H R1=H, R2 = NH2

R1= H, R2 = CN R1= CN, R2 = H



R1= NH2, R2 = CN R1= CN, R2 = NH2

Figure S13: difference density plots computed at SCS-CC2/def2-TZVP level for the cyclazine 
derivatives (isocontour σ=0.002 e·Bohr-3).

2. Design INVEST compounds with a non-zero oscillator strength

∆EST =  0.128 eV

fOSC = 7.33 ∙ 10 - 4
∆EST =  - 0.205 eV

fOSC = 1.01 ∙ 10 - 3 

Figure S14: ∆EST and oscillator strength computed at SCS-CC2/def2-TZVP level for the two 
cyclazine derivatives having the EDGs/EWGs on sites with a high HOMO/LUMO weight (left) and 
high LUMO/HOMO weight (right).

Table S14: CT delocalization volume computed at SCS-CC2/def2-TZVP level.

CT-del. V
[Å3]

R1= H, R2 = H 44.77
R1= NH2, R2 = H 45.18
R1=H, R2 = NH2 47.21
R1= H, R2 = CN 44.48



R1= CN, R2 = H 46.36
R1= NH2, R2 = CN 42.90
R1= CN, R2 = NH2 48.46

Figure S15: MOs diagram of 2N-uthrene (left) and 2B-uthrene (right) starting from the HOMO and 
LUMO of the isolated triangulenes.



Figure S16: mono-electron difference density plot of S2 state of 2N-uthrene (left) and 2B-uthrene 
(right). 

Table S15: percentage of doubles and higher order excitations computed at CASSCF(8,8)/def2-TZVP 
and 2 diagnostic computed at SCS-CC2/def2-TZVP level for S1 and T1 of 2N-Uthrene and 2N-
Zethrene.

S1 %D,T… T1 %D,T…

2N-Uthrene 13.87 11.52
2N-Zethrene 5.33 3.36
2B-Uthrene 17.40 16.00
2B-Zethrene 7.06 6.60



3. Simulation of the emission spectra
Within the Born-Oppenheimer approximation, the transition dipole moment associated with the 

vibronic transition between the vibrational states  and  belonging to the electronic states 
Θ𝑖,𝑣𝑖

Θ𝑓,𝑣𝑓

 and , respectively, can be written as follows:𝜓𝑖 𝜓𝑓

𝑀𝑖,𝜐𝑖→𝑓,𝜐𝑓
= ⟨𝜓𝑖,Θ𝑖,𝑣𝑖

│𝜇̂│𝜓𝑓,Θ𝑓,𝑣𝑓
⟩ = ⟨𝜐𝑖│𝜇⃗𝑖𝑓│𝜐𝑓⟩ (S2.1)

in which  is the electric transition dipole moment ( ), operating on the electronic 𝜇⃗𝑖𝑓 ⟨𝜓𝑖│𝜇̂│𝜓𝑓⟩
wavefunction  and . Within the harmonic approximation, the ground and excited state 𝜓𝑖 𝜓𝑓

hamiltonian can be written in terms of 3N-6 (or 3N-5 for a linear molecule) harmonic oscillator 
hamiltonian:

𝐻𝑔 =
3𝑁 ‒ 6

∑
𝑘

1
2

(𝑝̂ 2
𝑔𝑘 + 𝜔 2

𝑔𝑘𝑄 2
𝑔𝑘) (S2.2)



𝐻𝑒 =
3𝑁 ‒ 6

∑
𝑘

1
2

(𝑝̂ 2
𝑒𝑘 + 𝜔 2

𝑒𝑘𝑄 2
𝑒𝑘) (S2.3)

In which  is the momentum  is the harmonic frequency associated with the normal mode 𝑝̂𝛼𝑘 𝜔𝛼𝑘

. The normal modes of the ground state and excited state are related by the so-called Duschinsky 𝑄𝛼𝑘

rotation matrix  as follows:𝑆𝑖𝑗

𝑄𝑒𝑖 =
3𝑁 ‒ 6

∑
𝑗

𝑆𝑖𝑗𝑄𝑔𝑗 + 𝐷𝑖 (S2.4)

with  the displacement of the excited state geometry with respect the ground state geometry.𝐷𝑖

Expanding the electric transition dipole moment operator as a Taylor series in the nuclear coordinates 
( ) about the equilibrium geometry, we obtain:𝑄

𝜇⃗𝑖𝑓 = 𝜇⃗ 0
𝑖𝑓 +

3𝑁 ‒ 6

∑
𝑘

( ∂𝜇⃗𝑖𝑓

∂𝑄𝑓𝑘)𝑓0𝑄𝑓𝑘 = 𝜇⃗ 0
𝑖𝑓 +

3𝑁 ‒ 6

∑
𝑘

𝜇⃗𝑓𝑘𝑄𝑓𝑘 (S2.3)

in which  is the unperturbed electronic transition dipole moment. The first term in eq.S2.3 𝜇⃗ 0
𝑖𝑓

represents the Franck-Condon contribution, for which the electric transition dipole moment is 
considered independent on the nuclear motions, generally a valid approximation for the strongly 
dipole allowed electronic transition. The second term defines the so-called Herzberg-Teller 
contribution, which takes into account the variation of the electric transition dipole moment along the 
3N-6 nuclear motions, becoming important in the presence of weakly allowed electronic transition. 
The emission cross-section expression is given by the following formula:

𝜎(𝜔)𝑖→𝑓 =
4𝜔3

3ℏ𝑐3∑
𝑣𝑖,𝑣𝑓

𝑃𝑖,𝑣𝑖
(𝑇)𝛿(𝐸𝑖𝑓 + 𝐸𝑖,𝑣𝑖

‒ 𝐸𝑓,𝑣𝑓
)|⟨𝜐𝑓│𝜇⃗𝑖𝑓│𝜐𝑖⟩|2

(S2.4)

in which  is the Boltzmann population of the initial state,  is the adiabatic energy 
𝑃𝑖,𝑣𝑖

(𝑇) 𝐸𝑖𝑓

difference between the initial ( ) and final ( ) electronic state,  is the vibrational energy 𝜓𝑖 𝜓𝑓
𝐸𝑗,𝑣𝑗

associated with the j-th electronic state, i.e. . By inserting eq.S2.3 in eq.S2.4 
𝐻̂𝑣𝑖𝑏| �Θ𝑗,𝑣𝑗

⟩� = 𝐸𝑗,𝑣𝑗| �Θ𝑗,𝑣𝑗
⟩�

we obtain the following expression:



𝜎(𝜔)𝑖→𝑓 =
4𝜔3

3ℏ𝑐3∑
𝑣𝑖,𝑣𝑓

𝑃𝑖,𝑣𝑖
𝛿(𝐸𝑖𝑓 + 𝐸𝑖,𝑣𝑖

‒ 𝐸𝑓,𝑣𝑓
) × (S2.5)

× ⟨𝜐𝑓│𝜇⃗ 0
𝑖𝑓 + ∑

𝑘

𝜇⃗𝑓𝑘𝑄𝑓𝑘│𝜐𝑖⟩⟨𝜐𝑖│𝜇⃗ 0
𝑖𝑓 + ∑

𝑘'

𝜇⃗𝑓𝑘'𝑄𝑓𝑘'│𝜐𝑓⟩
Focusing on the last term and developing the product we obtain three terms: a term involving only 
the unperturbed transition dipole moment, thus recovering the so-called Franck-Condon 

approximation ( ); a term containing the integrals involving both 𝜎(𝜔) 𝐹𝐶
𝑖→𝑓 ∝ ⟨𝜐𝑓│𝜇⃗ 0

𝑖𝑓│𝜐𝑖⟩⟨𝜐𝑖│𝜇⃗ 0
𝑖𝑓│𝜐𝑓⟩

the unperturbed transition dipole moment and its derivative with respect to the normal modes, i.e. 
accounting for both the Franck-Condon and the Herzberg-Teller approximation (

); a term which does not contain the unperturbed 
𝜎(𝜔)𝐹𝐶/𝐻𝑇

𝑖→𝑓 ∝ ⟨𝜐𝑓│𝜇⃗ 0
𝑖𝑓│𝜐𝑖⟩⟨𝜐𝑖│∑

𝑘

𝜇⃗𝑓𝑘𝑄𝑓𝑘│𝜐𝑓⟩
transition dipole moment, thus accounting only for the Herzberg-Teller approximation (

). Thus, the emission cross-section receives 
𝜎(𝜔) 𝐻𝑇

𝑖→𝑓 ∝ ⟨𝜐𝑖│∑
𝑘

𝜇⃗𝑓𝑘𝑄𝑓𝑘│𝜐𝑓⟩⟨𝜐𝑓│∑
𝑘'

𝜇⃗𝑓𝑘'𝑄𝑓𝑘'│𝜐𝑖⟩
contribution from three effects, whose expressions are the following:

𝜎(𝜔)𝑖→𝑓 = 𝜎(𝜔) 𝐹𝐶
𝑖→𝑓 + 𝜎(𝜔)𝐹𝐶/𝐻𝑇

𝑖→𝑓 + 𝜎(𝜔) 𝐻𝑇
𝑖→𝑓 (S2.6)

𝜎(𝜔) 𝐹𝐶
𝑖→𝑓 =

4𝜔3

3ℏ𝑐3|𝜇⃗ 0
𝑖𝑓|2∑

𝑣𝑖,𝑣𝑓

𝑃𝑖,𝑣𝑖
|⟨𝜐𝑓│𝜐𝑓⟩|2𝛿(𝐸𝑖𝑓 + 𝐸𝑖,𝑣𝑖

‒ 𝐸𝑓,𝑣𝑓
) (S2.7)

𝜎(𝜔)𝐹𝐶/𝐻𝑇
𝑖→𝑓 =

4𝜔3

3ℏ𝑐3 ∑
𝑣𝑖,𝑣𝑓

𝑃𝑖,𝑣𝑖
𝛿(𝐸𝑖𝑓 + 𝐸𝑖,𝑣𝑖

‒ 𝐸𝑓,𝑣𝑓
)∑

𝑘
𝜇⃗ 0

𝑖𝑓𝜇⃗𝑓𝑘⟨𝜐𝑓│𝜐𝑖⟩⟨Θ𝑖,𝑣𝑖
│𝑄𝑓𝑘│𝜐𝑖⟩ (S2.8)

𝜎(𝜔) 𝐻𝑇
𝑖→𝑓 =

4𝜔3

3ℏ𝑐3 ∑
𝑣𝑖,𝑣𝑓

𝑃𝑖,𝑣𝑖
𝛿(𝐸𝑖𝑓 + 𝐸𝑖,𝑣𝑖

‒ 𝐸𝑓,𝑣𝑓
)∑

𝑘,𝑘'
𝜇⃗𝑓𝑘𝜇⃗𝑓𝑘'⟨𝜐𝑖│𝑄𝑓𝑘│𝜐𝑓⟩⟨𝜐𝑓│𝑄𝑓𝑘'│𝜐𝑖⟩ (S2.9)

In eqS2.7 the  has been put outside the vibrational wavefunctions integral since it does not depends 𝜇⃗ 0
𝑖𝑓

on the nuclear coordinates. In eqS2.8 and eqS2.9 the derivatives of  with respect the normal modes, 𝜇⃗𝑖𝑓

 and , have been put outside the integrals since they are constants. The resolution of the three 𝜇⃗𝑓𝑘 𝜇⃗𝑓𝑘'

equation is carried out employing a time-dependent approach, thus moving from the frequency 
domain to the time domain through the Fourier transform of the delta function. Being: 

𝛿(𝜔) =
1

2𝜋

+ ∞

∫
‒ ∞

𝑒𝑖𝜔𝑡𝑑𝑡 (S2.10)

It follows that the contributions to the emission cross-section in the time domain can be written as:



𝜎(𝜔) 𝐹𝐶
𝑖→𝑓 =

2𝜔3

3𝜋ℏ𝑐3|𝜇⃗ 0
𝑖𝑓|2

+ ∞

∫
‒ ∞

𝑑𝜏 𝑒𝑥𝑝(𝑖𝐸𝑖𝑓𝜏)𝑍 ‒ 1𝜌𝐹𝐶
𝑓𝑖 (𝑡,𝑇) (S2.11)

𝜎(𝜔)𝐹𝐶/𝐻𝑇
𝑖→𝑓 =

2𝜔3

3𝜋ℏ𝑐3∑
𝑘

𝜇⃗ 0
𝑖𝑓𝜇⃗𝑓𝑘

+ ∞

∫
‒ ∞

𝑑𝜏 𝑒𝑥𝑝(𝑖𝐸𝑖𝑓𝜏)𝑍 ‒ 1𝜌
𝐹𝐶
𝐻𝑇
𝑓𝑖 (𝑡,𝑇) (S2.12)

𝜎(𝜔) 𝐻𝑇
𝑖→𝑓 =

2𝜔3

3𝜋ℏ𝑐3∑
𝑘,𝑘'

𝜇⃗𝑓𝑘𝜇⃗𝑓𝑘'

+ ∞

∫
‒ ∞

𝑑𝜏 𝑒𝑥𝑝(𝑖𝐸𝑖𝑓𝜏)𝑍 ‒ 1𝜌𝐻𝑇
𝑓𝑖 (𝑡,𝑇) (S2.13)

With: 

𝜌𝐹𝐶
𝑓𝑖 (𝑡,𝑇) = 𝑇𝑟[𝑒

‒ 𝑖𝐸𝑓,𝑣𝑓
𝜏𝑓

𝑒
‒ 𝑖𝐸𝑖,𝑣𝑖

𝜏𝑖] (S2.14)

𝜌𝐹𝐶/𝐻𝑇
𝑓𝑖 (𝑡,𝑇) = 𝑇𝑟[𝑄𝑓𝑘𝑒

‒ 𝑖𝐸𝑓,𝑣𝑓
𝜏𝑓

𝑒
‒ 𝑖𝐸𝑖,𝑣𝑖

𝜏𝑖] (S2.15)

𝜌𝐻𝑇
𝑓𝑖 (𝑡,𝑇) = 𝑇𝑟[𝑄𝑓𝑘𝑒

‒ 𝑖𝐸𝑓,𝑣𝑓
𝜏𝑓

𝑄𝑓𝑘'𝑒
‒ 𝑖𝐸𝑖,𝑣𝑖

𝜏𝑖] (S2.16)

the so-called thermal vibration cross-correlation functions (TVCFs), which represents the thermal 

modulation of the vibrational wavefunctions overlap.  and , with 𝜏 = 𝜏𝑓 = 𝑡 ℏ 𝜏𝑖 =‒ 𝜏𝑓 ‒ 𝑖𝛽

 and   the partition function of the Boltzmann distribution. 𝛽 = (𝑘𝐵𝑇) ‒ 1
𝑍

The analytical expression for the TVCFs has been derived by Ianconescu and Pollak[6] within the 
harmonic approximation.
The stick spectra have been computed following a Time-Independent approach, within the 
undistorted displaced harmonic approximation, i.e. neglecting the Duschinsky rotation and assuming 
equal frequencies and normal modes for the ground and excited state. The intensity associated with 
each vibronic transition, starting from the lowest vibrational level of the initial electronic state can be 
written as:

𝐼𝑖,0→𝑓,𝑣𝑓
∝ |𝜇⃗ 0

𝑖𝑓|2
𝑇𝑆

∏
𝑘

(𝑆𝑘)
𝑛𝑘

𝑛𝑘!
𝑒𝑥𝑝⁡( ‒ 𝑆𝑘) (S2.17)

in which  is the vibrational quantum number and  is the Huang-Rhys (HR) factor associated with 𝑛𝑘 𝑆𝑘
the k-th vibrational normal mode, defining the projection of the geometry displacement between state 
 and  along the k-th totalsymmetric normal mode:𝑖 𝑓

𝑆𝑘 =
1
2{ 𝜔𝑘

ℏ
[𝑋𝑖 ‒ 𝑋𝑓]𝑀

1
2𝐿𝑘(𝑓)}2 (S2.18)



in which  is the vibrational frequency of the k-th normal mode,  and  are the cartesian 𝜔𝑘 𝑋𝑖 𝑋𝑓

coordinates of the equilibrium geometry of state state  and ,  is the diagonal matrix whose 𝑖 𝑓 𝑀

elements are the atomic masses,  is the vector containing the normal coordinates written in 𝐿𝑘(𝑓)
terms of mass-weighted cartesian coordinate of the final state. 
The resulting “stick spectra” is the convolution of each vibronic transition[6]:

𝐼(𝜔) ∝ ∑
𝑛1 = 0

… ∑
𝑛𝑛 = 0

𝐼𝑖,0→𝑓,𝑣𝑓 (S2.19)

For the simulation of the stick spectra only the HR factors > 0.01 have been taken into account 
considering only two vibrational quantum number ( ).𝑛 = 0,1
The Huang-Rhys factors, used to compute the stick spectra, have been obtained with Q-Chem 5.4. 

Figure S17: Duschinsky rotation matrix for 2T-b (a), 2T-d (b) and 2T-f (c).



Figure S18: normal mode at 1609 cm-1 for 2T-b (a) and at 1473 cm-1 2T-f (b)

Figure S19: Contributions of the Herzberg-Teller effect associate with each normal mode (

) for 2T-b (a), 2T-d (b) and 2T-f (c) compound.(∂𝜇𝑖𝑓 ∂𝑄𝑓𝑘)⟨𝜐𝑖│𝑄𝑓𝑘│𝜐𝑓⟩



Figure S20: normal modes with the highest HT contribution for 2T-b (a), 2T-d (b) and 2T-f (c).

Table S16: unperturbed transition dipole moment, Herzberg-Teller terms and total transition dipole moment 
computed at TD-DFT-PBE0/def2-SVP for 2T-b, 2T-d, 2T-f and 2N-Uthrene

2T-b 2T-d 2T-f 2N-Uthrene

 [a.u.]𝜇 0
𝑖𝑓 0.261 0.160 0.448 0.285

 [a.u.]𝜇𝐻𝑇 0.939 1.090 1.387 1.757
 [a.u.]𝜇𝑇𝑂𝑇 = 𝜇0 + 𝜇𝐻𝑇 1.200 1.250 1.835 2.042

Figure S21: Duschinsky rotation matrix between S0 and S1 normal modes of 2N-uthrene (left) and 
2B-uthrene (right) compound.



Figure S22: a) contributions of the Herzberg-Teller effect associate with each normal mode (

); b) normal mode at 1638 cm-1for 2N-Uthrene compound; c) contributions (∂𝜇𝑖𝑓 ∂𝑄𝑓𝑘)⟨𝜐𝑖│𝑄𝑓𝑘│𝜐𝑓⟩
of the Herzberg-Teller effect associate with each normal mode for 2B-uthrene.



Table S17: frequencies and Huang-Rhys factors for 2T-b, 2T-d, 2T-f (>0.001), 2N-uthrene and 2B-
uthrene (>0.01).

2T-b 2T-d 2T-f 2N-uthrene 2B-uthrene
Freq HR Freq HR Freq HR Freq HR Freq HR
246 0.0030 123 0.0912 121 0.0390 48 0.0540 59 0.7387
255 0.0016 405 0.0010 253 0.0400 55 0.5989 104 1.0446
384 0.0019 489 0.0121 280 0.3615 105 0.1370 157 0.2511
438 0.1643 514 0.0102 431 0.0074 210 0.0944 181 0.0331
459 0.1927 689 0.0626 446 0.1417 247 0.2616 249 0.0960
511 0.0304 805 0.0027 453 0.0015 490 0.0211 409 0.0136
565 0.0933 933 0.0027 522 0.0013 512 0.0143 451 0.0708
619 0.0050 1139 0.0024 561 0.0331 590 0.0345 464 0.0589
728 0.0068 1318 0.0048 604 0.1114 684 0.0116 470 0.0711
755 0.0043 1359 0.0109 649 0.0021 729 0.0135 494 0.1567
795 0.0011 1456 0.0608 783 0.0094 1092 0.0133 606 0.0119
1050 0.0047 1535 0.2067 788 0.0021 1127 0.0176 741 0.0125
1121 0.0121 1652 0.0254 948 0.0034 1168 0.0279 776 0.0338
1153 0.0013 1672 0.0037 1103 0.0052 1345 0.0298 782 0.2303
1242 0.0240 2341 0.0024 1224 0.0018 1390 0.0242 832 0.0137
1329 0.0131 3210 0.0010 1294 0.0598 1420 0.0239 1177 0.0994
1366 0.0042 1347 0.0011 1451 0.0257 1198 0.0173
1436 0.0572 1386 0.0445 1582 0.1519 1300 0.0328
1463 0.0548 1473 0.1599 1325 0.1561
1609 0.0609 1558 0.0580 1356 0.0197
1643 0.0031 1648 0.0554 1399 0.0185
1666 0.0165 1670 0.0788 1422 0.0107
1688 0.0150 1693 0.0067 1526 0.0293
3611 0.0056 2336 0.0011 1632 0.0103

3633 0.0304
3750 0.0040



4. Non-radiative decay rates

4.1. Rate expression derivation

The calculation of the non-radiative decay rates, internal conversion (IC) and (reverse)intersystem 
crossing ((R)ISC), is based on a time-dependent approach, similar to the one employed to derive the 
expression for the emission cross-section. 
The internal conversion rate constant ( ) can be written at first according to the Fermi’s golden rule:𝑘𝐼𝐶

𝑘𝐼𝐶 =
2𝜋
ℏ

|𝐻𝑁𝐴|2𝛿(𝐸𝑖𝑓 + 𝐸𝑖,𝑣𝑖
‒ 𝐸𝑓,𝑣𝑓

) (S3.1)

in which  is the non-adiabatic coupling defined as follows:𝐻𝑁𝐴

𝐻𝑁𝐴 =‒ ℏ2∑
𝑘

⟨Ψ𝑓│ ∂
∂𝑄𝑓𝑘

│Ψ𝑖⟩ =

=‒ ℏ2∑
𝑘

⟨𝜓𝑓Θ𝑓,𝑣𝑓│ ∂
∂𝑄𝑓𝑘

│𝜓𝑖Θ𝑖,𝑣𝑖⟩ =

=‒ ℏ2∑
𝑘

⟨𝜓𝑓│ ∂
∂𝑄𝑓𝑘

│𝜓𝑖⟩⟨Θ𝑓,𝑣𝑓│ ∂
∂𝑄𝑓𝑘

│Θ𝑖,𝑣𝑖⟩ =

= ∑
𝑘

⟨𝜓𝑓│𝑃̂𝑓𝑘│𝜓𝑖⟩⟨Θ𝑓,𝑣𝑓
│𝑃̂𝑓𝑘│Θ𝑖,𝑣𝑖

⟩ (S3.2)

With . In the last step, we employed the Born-Oppenheimer approximation. 𝑃̂𝑓𝑘 = ( ‒ ℏ) ‒ 1(∂ ∂𝑄𝑓𝑘)
The sum runs over the vibrational normal modes, so that the non-adiabatic coupling can be written as 

the sum of each contribution associated with each normal modes:  Consequently, by 
𝐻𝑁𝐴 = ∑

𝑘

𝐻𝑁𝐴,𝑘.

inserting eq.S3.2 into eq.S3.1, the total internal conversion rate can be written as the sum of different 

contribution: , with  defined as:
𝑘𝐼𝐶 = ∑

𝑘𝑘'

𝑘𝐼𝐶,𝑘𝑘' |𝐻𝑁𝐴,𝑘𝑘'|2

|𝐻𝑁𝐴,𝑘𝑘'|2 = 𝐻𝑁𝐴,𝑘𝐻𝑁𝐴,𝑘' =
= ⟨𝜓𝑓│𝑃̂𝑓𝑘│𝜓𝑖⟩⟨𝜓𝑖│𝑃̂𝑓𝑘'│𝜓𝑓⟩⟨Θ𝑓,𝑣𝑓

│𝑃̂𝑓𝑘│Θ𝑖,𝑣𝑖
⟩⟨Θ𝑖,𝑣𝑖

│𝑃̂𝑓𝑘'│Θ𝑓,𝑣𝑓
⟩ (S3.3)

We label the product between the integral involving the electronic wavefunctions as  (the diagonal 𝑅𝑘𝑘'

elements  have been labelled as  in the main text) and the one involving the vibrational 𝑅𝑘𝑘 𝑁𝐴𝐶𝑘

wavefunction as . The expression of the internal conversion rate receiving contributions from the 𝑉𝑘𝑘'

k-th and k’-th normal mode can be written as follow:



𝑘𝐼𝐶,𝑘𝑘' =
2𝜋
ℏ

𝑅𝑘𝑘'𝑍
‒ 1∑

𝑣𝑖,𝑣𝑓

𝑒
‒ 𝐸𝑖,𝑣𝑖

𝛽
𝑉𝑘𝑘'𝛿(𝐸𝑖𝑓 + 𝐸𝑖,𝑣𝑖

‒ 𝐸𝑓,𝑣𝑓
) (S3.4)

in which we included the Boltzmann distribution function associated with the initial state 

. Now, we move to the time domain employing the Fourier transform of the delta function. 𝑒
‒ 𝐸𝑖,𝑣𝑖

𝛽
/𝑍

The argument of the sum becomes:

+ ∞

∫
‒ ∞

𝑑𝜏 𝑒𝑥𝑝(𝑖𝐸𝑖𝑓𝜏) ×

⟨Θ𝑖,𝑣𝑖│𝑉̂𝑓𝑘𝑒
‒ 𝑖𝐸𝑓,𝑣𝑓

𝜏

│Θ𝑓,𝑣𝑓⟩⟨Θ𝑖,𝑣𝑖│𝑉̂𝑓𝑘'𝑒
‒ (𝛽 ‒ 𝑖𝜏)𝐸𝑖,𝑣𝑖│Θ𝑓,𝑣𝑓⟩

(S3.5)

It follows that the internal conversion rate constant can be written as:

𝑘𝐼𝐶,𝑘𝑘' =
2𝜋
ℏ

𝑅𝑘𝑘'𝑍
‒ 1∑

𝑣𝑖,𝑣𝑓

+ ∞

∫
‒ ∞

𝑑𝜏 𝑒𝑥𝑝(𝑖𝐸𝑖𝑓𝜏) × (S3.6)

× ⟨Θ𝑖,𝑣𝑖│𝑉̂𝑓𝑘𝑒
‒ 𝑖𝐸𝑓,𝑣𝑓

𝜏

│Θ𝑓,𝑣𝑓⟩⟨Θ𝑖,𝑣𝑖│𝑉̂𝑓𝑘'𝑒
‒ (𝛽 ‒ 𝑖𝜏)𝐸𝑖,𝑣𝑖│Θ𝑓,𝑣𝑓⟩

Or, in the more compact form, defining the thermal cross-correlation function for the internal 
conversion as:

𝑘𝐼𝐶,𝑘𝑘' =
2𝜋
ℏ

𝑅𝑘𝑘'

+ ∞

∫
‒ ∞

𝑑𝜏 𝑒𝑥𝑝(𝑖𝐸𝑖𝑓𝜏)𝑍 ‒ 1𝜌𝐼𝐶
𝑖𝑓(𝑡) (S3.7)

with 

𝜌𝐼𝐶
𝑓𝑖(𝑡,𝑇) = 𝑇𝑟[𝑉𝑓𝑘𝑒

‒ 𝑖𝐸𝑓,𝑣𝑓
𝜏𝑓

𝑉𝑓𝑘'𝑒
‒ 𝑖𝐸𝑖,𝑣𝑖

𝜏𝑖] (S3.8)

The electronic non-adiabatic couplings, , have been computed according to the following 𝑅𝑘
expression:



𝑅𝑘 = ⟨𝜓𝑓│ ∂
∂𝑄𝑓𝑘

│𝜓𝑖⟩ =
⟨𝜓𝑓│ ∂𝑉

∂𝑄𝑓𝑘
│𝜓𝑖⟩

𝐸(𝜓𝑓) ‒ 𝐸(𝜓𝑖)
(S3.9)

with  the electrostatic potential. The numerator of eqS3.9 can be written as follows[8,9]:𝑉
 

⟨𝜓𝑓│ ∂𝑉
∂𝑄𝑓𝑘

│𝜓𝑖⟩ =‒ ∑
𝜎

𝑍𝜎𝑒2

𝑀𝜎
∑

𝑗 = 𝑥,𝑦,𝑧

𝐹𝑖𝑓,𝜎𝑗𝐿𝑓𝜎𝑗,𝑘 (S3.10)

with  the charge of the -th nucleus,  the electron charge,  the mass of the -th nucleus, 𝑍𝜎 𝜎 𝑒 𝑀𝜎 𝜎

 is the j-th components of the Hessian matrix associated with the -th atomic 𝐿𝑓𝜎𝑗,𝑘 = ∂𝑞𝜎𝑗 ∂𝑄𝑓𝑘 𝜎

center,  is the j-th component of the transition electric field at the atomic center  which is 𝐹𝑖𝑓,𝜎𝑗 𝜎

proportional to the transition density matrix ( ) evaluated at the equilibrium geometry of the initial Ω 0
𝑖𝑓

state:

𝐹𝑖𝑓,𝜎𝑗 = ⟨𝜓𝑓│𝐹𝜎𝑗│𝜓𝑖⟩ = ∫𝑑𝑟Ω 0
𝑖𝑓

𝑒(𝑟𝜎𝑗 ‒ 𝑅𝜎𝑗)

|𝑟𝜎 ‒ 𝑅𝜎|3 (S3.11)

The (R)ISC rate expression is simpler than the one derived for IC. Assuming that the SOC is not 

dependent on the nuclear coordinates, the  can be written as:𝑘(𝑅)𝐼𝑆𝐶

𝑘(𝑅)𝐼𝑆𝐶 =
2𝜋
ℏ

|𝐻𝑆𝑂𝐶|2𝛿(𝐸𝑖𝑓 + 𝐸𝑖,𝑣𝑖
‒ 𝐸𝑓,𝑣𝑓

) (S3.12)

Thus, moving to the time domain, the eqS3.12 can be rewritten as:

𝑘(𝑅)𝐼𝑆𝐶 =
1
ℏ

|𝐻𝑆𝑂𝐶|2
+ ∞

∫
‒ ∞

𝑑𝜏 𝑒
𝑖𝐸𝑖𝑓𝜏

𝑍 ‒ 1𝜌𝐼𝑆𝐶
𝑖𝑓 (𝑡,𝑇) (S2.13)

with

𝜌𝐼𝑆𝐶
𝑖𝑓 (𝑡,𝑇) = 𝑇𝑟[𝑒

‒ 𝑖𝐸𝑓,𝑣𝑓
𝜏𝑓

𝑒
‒ 𝑖𝐸𝑖,𝑣𝑖

𝜏𝑖] (S2.14)



4.2. Symmetry consideration on spin-orbit coupling calculations.

It is possible from symmetry considerations to determine if the spin-orbit coupling (SOC) driving 
(Reverse) Intersystem Crossing ((R)ISC) would be vanishing or not.
The spin-orbit operator  is defined: 𝐻𝑆𝑂𝐶

𝐻𝑆𝑂𝐶 = 𝐴𝑆𝑂𝐶(𝑟)𝐿⃗ ⋅ 𝑆⃗
With  a scalar function of the position,  the orbital momentum operator and  the spin 𝐴𝑆𝑂𝐶(𝑟) 𝐿⃗ 𝑆⃗
momentum operator
By definition of the scalar  is a scalar. 𝐿⃗ ⋅ 𝑆⃗

The components  and  of the orbital and the spin momentums transform like rotations 𝐿𝑥,𝑦,𝑧 𝑆𝑥,𝑦,𝑧

. From a symmetry perspective,  thus belongs to the totally symmetric irreducible 𝑅𝑥,𝑦,𝑧 𝐿⃗ ⋅ 𝑆⃗
representation whatever the point group considered.

The SOC matrix element between  and  excited states  will be non-vanishing 𝑆1 𝑇𝑛
⟨𝜓𝑆1

│𝐻𝑆𝑂𝐶│𝜓𝑇𝑛
⟩

if the product of the representations of  and ,  includes the totally symmetric 𝑆1 𝑇𝑛
Γ(𝜓𝑆1

) ⊗ Γ(𝜓𝑇𝑛
)

representation. 
The first singlet excited state wavefunction writes:
𝜓𝑆1

= 𝜓𝑠𝑝𝑎𝑐𝑒
𝑆1

× 𝜓𝑠𝑝𝑖𝑛
𝑆1

 representation is the totally symmetric representation so that the representation the first singlet 
𝜓𝑠𝑝𝑖𝑛

𝑆1

excited state wavefunction .
Γ(𝜓𝑆1

) = Γ(𝜓𝑠𝑝𝑎𝑐𝑒
𝑆1 )

The n-th triplet excited state wavefunction writes:
𝜓𝑇𝑛

= 𝜓𝑠𝑝𝑎𝑐𝑒
𝑇𝑛

× 𝜓𝑠𝑝𝑖𝑛
𝑇𝑛

 representation is associated to the rotations.
𝜓𝑠𝑝𝑖𝑛

𝑇𝑛



Figure S23: molecular orbitals computed at HF/def2-TZVP for 2T-b (a), 2T-d (b) and 2T-f (c) 
(isocontour σ=0.02 e·Bohr-3).

Table S18: S1, S2, T1 vertical excitation energies computed at SCS-ADC(2)+COSMO/def2-TZVP and 
electric dipole moment in vacuum for cyclazine, 2T-f and 2B-uthrene.

Cyclazine Vacuum Toluene Acetonitrile  [D]μvac
el

S0 tot. en. [hartree] -516.502846 -516.506480 -516.510689 0.0010
S1 tot. en. [hartree] -516.463143 -516.466449 -516.471042 0.0005
T1 tot. en. [hartree] -516.454760 -516.458078 -516.462779 0.0005

 exc. [eV]Svert
1

1.080 1.089 1.079

 exc. [eV]Tvert
1

1.308 1.317 1.304

Δ  [eV]Evert
ST

-0.228 -0.228 -0.225
2T-f

S0 tot. en. [hartree] -811.319582 -811.334481 -811.353224 10.50
S1 tot. en. [hartree] -811.245327 -811.257052 -811.271410 8.79
T1 tot. en. [hartree] -811.240213 -811.252873 -811.270153 10.30

 exc. [eV]Svert
1

2.020 2.107 2.226

 exc. [eV]Tvert
1

2.160 2.221 2.260

Δ  [eV]Evert
ST

-0.140 -0.114 -0.034

2B-uthrene



S0 tot. en. [hartree] -894.876107 -894.835752 -894.842980 0.322
S1 tot. en. [hartree] -894.830893 -894.791649 -894.798594 1.485
S2 tot. en. [hartree] -894.826801 -894.788507 -894.795081 0.092
T1 tot. en. [hartree] -894.823987 -894.784364 -894.791403 0.566

 exc. [eV]Svert
1

1.201 1.200 1.208

 exc. [eV]Svert
2

1.276 1.286 1.303

 exc. [eV]Tvert
1

1.418 1.398 1.403

Δ  [eV]E vert
S1T1

-0.217 -0.198 -0.196

Δ  [eV]E vert
S2T1

-0.142 -0.113 -0.100

For cyclazine the solvent effect has a negligible impact on the excited state energies 
and the ΔEST, acquiring values close to those obtained in vacuum, in line with the 

vanishing electric dipole moment ( ) of S0, S1 and T1 (see Table S18). On the μvac
el

contrary, 2T-f is more affected by the change of the dielectric constant due to the 
stronger push-pull character brought by the amino and cyano groups. Moving from 
toluene to acetonitrile, the vertical excitation energies are blue-shifted because of the 

larger stabilization of S0 (  = 10.50 Debye) with respect to S1 (  = 8.47 Debye) μvac
el μvac

el

and T1 (  = 10.30 Debye). Moreover, the larger  of T1 than S1 results in a larger μvac
el μvac

el

stabilization of the former in acetonitrile, closing the gap between the excited states 
and leading to a less negative ΔEST. As for cyclazine, the small and similar electric 
dipole moment exhibited in the ground- and excited-states of 2B-uthrene translates in 
a small and similar modulation of their energy, leading to a slight blue-shift of the 
vertical excitation energies, ensuring the negative ΔEST between S1 (S2) and T1.
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