Reduced Graphene Oxide-wrapped Fe-Fe₃O₄@mSiO₂ Hollow

Core-shell Composites with Enhanced Electromagnetic Wave

Absorption Properties

Yuanyuan Zhang,[‡]^a Yange Yu,[‡]^a Yong Yuan,^c Xueyin Sun,^{*}^a Wenzhu Shao,^{ab} Liang Zhen^{ad} and

Jiantang Jiang*ab

- ^a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
 E-mail: 13944139606@163.com, jjtcy@hit.edu.cn
- National Key Laboratory of Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin, 150001, China
- ^c Precision Machinery Research Institutes of Shanghai Space Flight Academy, Shanghai, 201600, China
- ^d Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China

‡ These authors contributed equally to this work and should be considered co-first authors.

Abstract

The Fe/Fe₃O₄ nanocomposite with mesoporous silica (mSiO₂ for short) shell was successfully prepared by solvothermal reaction combined with hydrogen-thermal annealing (550 °C). Further, reduced graphene oxide (RGO) was introduced to obtain Fe-Fe₃O₄@mSiO₂@RGO hollow core-shell composites with hollow structure by Aerogel method utilizing home-made equipment. The introduction of mSiO₂ on the surface of Fe₃O₄ constructed a ventilated framework, which thereafter maintained the dispersion of fine Fe particles emerging from the reduction process. The transformation from Fe₃O₄ to Fe nanoparticles enhanced the ferromagnetic loss, while the introduction of high conductivity RGO also enhanced the polarization relaxation and conductivity loss. Meanwhile, the unique hollow structure of the core-shell structure effectively reduces the density of the ferromagnetic composites (Fe-Fe₃O₄@mSiO₂) without sacrificing the contact between RGO and nanoparticles, adding more surfaces/interfaces. Fe-Fe₃O₄@mSiO₂@RGO exhibited excellent

electromagnetic wave absorbing performances. The coating using Fe-Fe₃O₄@mSiO₂@RGO as fillers exhibits a minimum reflection loss of -66.24 dB with an effective absorption bandwidth of 5.31 GHz with a sample thickness of only 1.79 mm. The hollow core-shell structure of RGO-wrapped Fe-Fe₃O₄@mSiO₂ demonstrates a promising approach for the design of lightweight and high-performance electromagnetic absorption materials.

Keywords

Electromagnetic absorption; Hollow core-shell structure; Reduced graphene oxide; Ferrites/ferromagnetic metal

Fig. S1 (a) low-angle XRD patterns of $Fe_3O_4@mSiO_2$. (b) XRD patterns RGO and FFmSR.

Fig. S2 The ε'' versus ε' of (a) Fe₃O₄, (b) Fe₃O₄@mSiO₂ and (c) FFmS.

Fig. S3 Reflection loss versus frequency plot of (a) Fe_3O_4 , (b) $Fe_3O_4@mSiO_2$ in the frequency range of 2-18 GHz.

Fig. S4 Frequency-dependent attenuation constant of Fe₃O₄, Fe₃O₄@mSiO₂, FFmS and FFmSR.

Fig. S5 Impedance matching of Fe₃O₄ (a), Fe₃O₄@mSiO₂ (b), FFmS (c) and FFmSR (d) with different

thicknesses.

Sample	RL _{min}	$f_{ m EAB}$	Thickness	Filler loading	Refs.
	(dB)	(GHz)	(mm)	(wt.%)	
Fe ₃ O ₄ @mSiO ₂	-38.7	4.00	2.0	25	50
Fe ₃ O ₄ @SiO ₂ @ZnO	-24.4	~2.00	5.5	30	51
Fe ₃ O ₄ /SiO ₂ /graphene	-27.0	2.30	1.5	50	52
Fe ₃ O ₄ @MnO ₂	-48.5	4.40	2.5	60	53
Fe ₃ O ₄ @Co	-20.7	2.90	4.0	60	54
Fe ₃ O ₄ @CuSiO ₃	-34.8	5.10	1.5	70	55
Fe ₃ O ₄ @SnO ₂	-27.38	2.1	4.0	80	56
FFmSR	-66.24	5.31	1.79	70	This work

 Table 1. Microwave Absorption Performance of Similar Composites.