Supporting Information

An all-inorganic Li-doped Cs₃Cu₂I₅ single crystal for dual gamma ray and

neutron detection applications

Peng Xiang¹[§], Qinhua Wei^{1*}, Chenger Wang^{2,3}[§], Peiqing Cai⁴, Yufeng Tong¹, Gao Tang¹, Xilei Sun^{3*}, Fan Yang⁵, Hongsheng Shi⁶, Zugang Liu⁴ and Laishun Qin¹

¹College of Materials and Chemistry, China Jiliang University, Hangzhou 310018

² National Engineering Research Center for Rare Earth, GRINM Group Co., Ltd and Grirem Advanced Materials Co., Ltd., Beijing 100088

³ State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, CAS, Beijing 100049

⁴College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018

⁵ The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071

⁶Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011

§ These authors contributed equally to this work.

* Corresponding authors (Emails: weiqinhua1985@163.com; sunxl@ihep.ac.cn)

Figure S1. (a) Powder XRD patterns of both undoped and Li^+ -doped $Cs_3Cu_2I_5$. (b) Narrow-angle powder X-ray diffraction with high-purity silicon as an internal standard.

Figure S2. (a) XPS survey spectrum of Cs₃Cu₂I₅:Li. (b),(c) and (d) High-resolution XPS spectra of Cs 3d, Cu 2p and I 3d, respectively.

Calculated	Measured				
concentration (at%)	concentration (at%)				
1.0	0.34				
2.5	0.92				

Table S1. ICP-OES results of $Cs_3Cu_2I_5$:Li with different Li⁺ concentration.

Figure S3. ⁷Li NMR spectrum of Cs₃Cu₂I₅:Li.

Figure S4. X-ray excited luminescence spectra of undoped and Li⁺-doped Cs₃Cu₂I₅ single crystals and BGO.

Figure S5. (a) Neutron energy spectra of 2.5at% Li⁺-doped Cs₃Cu₂I₅ crystal under the excitation of ²⁵²Cf source.

Figure S6. The relationship between neutron energy and reaction cross section of each element in Li⁺-doped Cs₃Cu₂I₅.

Table S2. FOM values of 2.5at% Li⁺-doped Cs₃Cu₂I₅ singe crystal under different prompt integration window combinations.

Prompt window (ns)	100	200	250	260	275	280	300	400	500
FOM	1.66	1.91	2.01	2.09	2.19	2.25	2.10	1.95	1.57