Supplementary

Enhanced performance of a n-Si/p-GaTe heterojunction through interfacial passivation and thermal oxidation

Yali Liu¹, Xiaoxiang Wu¹, Wenxuan Guo¹, Mengge Li¹, Cong Xiao¹, Tianjian Ou¹, Jiadong Yao¹, Ying Yu¹, Yuan Zheng¹, Yewu Wang^{1,2*}

¹Department of Physics, Zhejiang Province Key Laboratory of Quantum Technology and Device & State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, P. R. China. ²Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China

Figure S1. (a) The optical image of n-Si/p-GaTe heterojunction with and without AlOx passivation layer. (b) Thickness of GaTe flake used in the n-Si/p-GaTe heterojunction.

Figure S2. (a) *I-V* curve of GaTe-ITO with Ohmic contact. (b) *I-V* curve of Si-Al with Ohmic contact. (c) Output curves of GaTe FET with Cr/Au electrodes at various V_g .

Figure S3. *I-V* curves of other three n-Si/p-GaTe heterojunctions without AlO_x passivation, with AlO_x passivation and with AlO_x passivation-thermal oxidation under dark condition.

Figure S4. Time-dependent photoresponse of n-Si/p-GaTe heterojunction without AlO_x passivation layer before and after heat treatment.

Figure S5. (a) The optical image of GaTe FET. (b) Raman spectroscopy of GaTe channel of the FET.

Figure S6. Transfer curves of GaTe FET before and after thermal oxidation.