Supporting Information

Synergistic effect of defect passivation and energy level adjustment for low-temperature carbon-based CsPbI₂Br perovskite solar cells

Xiang Zhang^a, Dan Zhang^a, Tonghui Guo^b, Chunqiu Zhengc^c, Yuan Zhou^a, Junjun Jin^a,

Zhenkun Zhu^a, Zhen Wang^a, Xiaxia Cui^a, Sujuan Wu^c, Jing Zhang^b, Qidong Tai^a*

^a The Institute of Technological Sciences, Wuhan University, Wuhan 430072, P. R. China.

^b Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang 315211, P. R. China.

^c Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China.

*Corresponding Authors: qdtai@whu.edu.cn

Experimental Section

Material

Indium-doped tin oxide (ITO, sheet resistance: 7-9 Ω sq⁻¹) glass, lead (II) bromide (PbBr₂, 99.999%), phenylethylammonium iodide (PEAI, 99.9%), phenylethylammonium bromide (PEABr, 99.9%) and cesium iodide (CsI, 99.999%) were bought from Advanced Election Technology Co., Ltd. Tin (IV) oxide (SnO₂) colloid precursor (15 wt% in H₂O colloidal dispersion) was obtained from Alfa Aesar. Lead(II) iodide (PbI₂, 99.99%), 4-fluorophenylethylammonium iodide (P-F-PEAI), 4fluorophenylethylammonium bromide (P-F-PEABr) and poly (3, 4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) were purchased from Xi'an Polymer Light Technology Corp. Lead(II) acetate trihydrate (Pb(Ac)₂, 99.999%), N,N-Dimethylformamide (DMF, 99.8%), Dimethyl sulfoxide (DMSO, \geq 99.9%) and ethyl acetate (EA, 99.8%) were provided by Sigma-Aldrich. Isopropyl alcohol (IPA, \geq 99.9%), zinc acetate dihydrate (Zn(Ac)₂·2H₂O, 99.995%), ethanolamine (standard for GC, >99.5%), and 2-Methoxyethanol (anhydrous, 99.8%) were obtained from Aladdin. Conductive carbon pastes were bought from Jujo Printing Supplies & Technology (Pinghu) Co., Ltd. Absolute ethanol and acetone were gotten from Sinopharm. PbI₂(DMSO) and PbBr₂(DMSO) adducts were synthesized according to the previous works.^{1, 2}

Device fabrication

Etched ITO glass substrate (1.5 cm \times 1.5 cm) was sequentially cleaned with detergent, deionized water, acetone, IPA, and absolute ethanol under sonication for 20

min, respectively. Later, it was dried by the nitrogen (N₂) flow and was treated with ultraviolet (UV)-ozone for 5 min. The SnO₂ ETL was deposited on the ITO glass substrate by spin-coating diluted SnO₂ solution (2.67 wt% in deionized water) at 500 rpm for 3 s and 4000 rpm for 30 s, followed by annealing at 150 °C for 30 min in ambient air. It was treated with UV-ozone for 10 min, the pre-prepared ZnO solution (250 mg Zn(Ac)₂·2H₂O was dissolved in 10 ml 2-Methoxyethanol and 275 ul ethanolamine and stirred for 12 h) was spin-coated on the SnO₂ ETL at 500 rpm for 3 s and 4000 rpm for 60 s and annealed at 150 °C for 30 min in ambient air. After naturally cooling down, the glass/ITO/SnO₂/ZnO substrate was moved into a N₂-filled glovebox for perovskite and carbon electrode deposition. To obtain the CsPbI₂Br precursor solution, 234 mg CsI, 243 mg PbI₂(DMSO), 200 mg PbBr₂(DMSO) and 5 mg Pb(Ac)₂ were added in 1 mL mixed solvents of DMSO and DMF (1:4, v/v) and stirred at 70 °C for 12 h. The prepared precursor solution was filtered with PTFE filter (0.22 µm), and then was spin-coated onto the glass/ITO/SnO₂/ZnO substrate at 1000 rpm for 10 s and 4000 rpm for 40 s. In the last 20 s of second step, 150 µL anti-solvent EA was quickly dropped onto the precursor film. The obtained precursor film was annealed at 120 °C for 10 min. For the passivation layers, the IPA precursor solution with various concentrations of PEAI, PEABr, P-F-PEAI or P-F-PEABr was dropped onto the CsPbI₂Br surface and allowed to stand for 2 min before spin-coating. After that, they were spin-coated on the CsPbI2Br films at 3000 rpm for 30 s and baked at 100 °C for 15 min. Finally, conductive carbon paste was deposited on the sample surface by the doctor-blade technique and annealed at 120 °C for 20 min to evaporate the residual solvents. The device active area is 0.09 cm².

Characterization

The current density-voltage (J-V) characteristics were recorded by an Oriel Sol 3A solar simulator (Newport, USA) with a Keithley 2400 source meter under a simulated AM 1.5G solar illumination. The light intensity (P_{light}) was calibrated to be 100 mW cm⁻² by a National Renewable Energy Laboratory (NREL)-certified standard silicon solar cell. The reverse voltage scan rate (from 1.5 to 0 V) was 100 m V s⁻¹ with a delay time of 50 ms. The external quantum efficiency (EQE) spectra were collected with a standard EQE system (Newport 66902, USA). The crystal structure was obtained by an X-ray diffractometer (XRD, Bruker D8 Advance, Germany) with Cu $K\alpha$ (λ = 1.5406 Å) radiation source at 40 kV and 40 mA. The chemical binding energy was monitored by an X-ray photoelectron spectrometer (XPS, Thermo Scientific K-Alpha+, USA) with an Al $K\alpha$ (hv = 1486.6 eV) radiation source. Fourier-transform infrared spectroscopy (FTIR) spectra were collected using a Nicolet iS5 instrument (Thermo Scientific, USA) with an iD7 ATR-diamond. The morphologies and energy-dispersive X-ray (EDX) elemental mapping were tested using a field-emission scanning electron microscopy (SEM, Zeiss SIGMA, Germany). The root mean square (RMS) roughness was investigated by the Nano Wizard 4 atomic force microscopy (AFM, JPK Inc. Germany). The UV-visible (UV-vis) absorption spectra were recorded on the UV-vis spectrophotometer (Shimadzu UV-2600i, near-infrared Japan). Steady-state photoluminescence (PL) and time-resolved PL (TRPL) decay spectra were performed with a fluorescence spectrometer (HORIBA DeltaFlex, U.K.) with excitation wavelength of 485 nm. The ultraviolet photoelectron spectroscopy (UPS) was measured using an ESCALAB Xi+ system (Thermo Fisher, USA). The electrochemical impedance spectroscopy (EIS), transient photovoltage (TPV), transient photocurrent (TPC), and capacitance-voltage (C^{-2} -V) measurements were conducted on an electrochemical workstation (Zahner, Germany). The dark *J*-V curves were detected by a Keithley 2400 source meter with a scan rate of 100 mV s⁻¹. The contact angles were measured using an optical goniometer (Dataphysics OCA 20, Germany) by drop casting a single drop (0.01 mL) of H₂O on the perovskite film and analyzed with its software. The photograph was taken after the H₂O droplet was in contact with the perovskite film for 1 s. Unless otherwise specified, all measurements were carried out in ambient air (25 °C, 20-30% relative humidity (RH)).

Fig. S1 Molecular structures of PEAI, PEABr, P-F-PEAI and P-F-PEABr.

Fig. S2 EDX elemental mapping of reference and passivated CsPbI₂Br films: (a) reference, (b) PEAI, (c) PEABr, (d) P-F-PEAI and (e) P-F-PEABr.

Fig. S3 (a) Full XPS survey spectra, (b) N 1s, (c) F 1s and (d) C 1s XPS spectra of reference and passivated CsPbI₂Br films.

Fig. S4 FTIR spectra of organic ammonium halide salts powders, PbI₂ powders, and organic ammonium halide salts/PbI₂ mixed powders. Mixed powders were obtained by dissolving them in 1 ml DMSO at 70 °C under stirring for 12 h, followed by the removal of DMSO solvent by rotary evaporation and drying in a vacuum oven at 60 °C for 48 h. The molar mass of PbI₂ is 0.9 M. The mass ratio of organic ammonium halide salts/PbI₂ is 1:5.

Fig. S5 FTIR spectra of organic ammonium halide salts powders, PbBr₂ powders, and organic ammonium halide salts/PbBr₂ mixed powders. Mixed powders were obtained by dissolving them in 1ml DMSO at 70 °C under stirring for 12 h, followed by the removal of DMSO solvent by rotary evaporation and drying in a vacuum oven at 60 °C for 48 h. The molar mass of PbBr₂ is 0.9 M. The mass ratio of organic ammonium halide salts/PbBr₂ is 1:5.

Fig. S6 XPS depth spectra of I 3d and Br 3d in the passivated CsPbI₂Br films: (a) PEAI,(b) P-F-PEAI, (c) PEABr, (d) P-F-PEABr.

Fig. S7 XPS depth spectra of F 1s in the P-F-PEABr passivated CsPbI₂Br films.

Fig. S8 *J-V* curves for CsPbI₂Br C-IPSCs passivated by the organic ammonium halide salts with different precursor solution concentrations: (a) PEAI, (b) PEABr, (c) P-F-PEAI and (d) P-F-PEABr.

Fig. S9 *J-V* curves for various carbon-based CsPbI₂Br PSCs under both the reverse scan (*RS*) and forward scan (*FS*) directions: (a) reference, (b) PEAI, (c) PEABr, (d) P-F-PEAI and (e) P-F-PEABr.

Fig. S10 Enlarged view of EQE curves at long wavelengths.

Fig. S11 SPO curves of J_{sc} for reference and passivated devices at their maximum power points.

Fig. S12 (a) V_{oc} , (b) J_{sc} and (c) FF distributions of reference and passivated devices

from 30 individual C-IPSCs.

Fig. S13 UPS spectra of secondary electron cut-off ($E_{cut-off}$) and onset (E_{onset}) energy of reference and passivated CsPbI₂Br films: (a-b) reference, (c-d) PEAI, (e-f) PEABr, (g-h) P-F-PEAI and (i-j) P-F-PEABr. (k) Energy level diagram of corresponding materials used in the CsPbI₂Br C-IPSCs.

Fig. S14 J_{sc} versus P_{light} for reference and passivated devices.

Table S1. Fitting parameters of TRPL decay spectra of reference and passivatedCsPbI2Br films on the glass substrate.

Course la	$ au_1 au_1$		4	$ au_2$	$ au_2$	$ au_{pl}$	
Sample	(ns) (%)	(%)	A_2	(ns)	(%)	(ns)	
Reference	0.58	8.58	19.47	0.74	27.81	80.53	24.07
PEAI	0.56	33.37	69.75	0.78	10.39	30.25	26.42
PEABr	0.47	11.31	14.26	0.73	43.78	85.74	39.15
P-F-PEAI	0.38	13.17	8.21	0.76	73.60	91.79	68.64
P-F-PEABr	0.32	11.45	5.41	0.81	79.05	94.59	75.39

Table S2. The V_{TFL} and N_{trap} values of hole-only devices with the architecture of ITO/PEDOT:PSS/CsPbI₂Br/with or without the passivation layers/carbon.

Device	Reference	PEAI	PEABr	P-F-PEAI	P-F-PEABr
V_{TFL} (V)	1.82	1.65	1.34	1.25	1.19
$N_{trap} (10^{16} \text{ cm}^{-3})$	1.50	1.36	1.10	1.03	0.98

Concentration (mg ml ⁻¹)	$V_{oc}\left(\mathrm{V} ight)$	J_{sc} (mA cm ⁻²)	FF	PCE (%)
0.0	1.217	14.69	0.681	12.18
0.4	1.227	14.73	0.696	12.58
0.8	1.244	14.81	0.720	13.27
1.2	1.212	14.76	0.716	12.81
1.6	1.205	14.64	0.695	12.26

Table S3. Photovoltaic parameters of CsPbI₂Br C-IPSCs passivated by the PEAI with different precursor solution concentrations.

Table S4. Photovoltaic parameters of CsPbI₂Br C-IPSCs passivated by the PEABr with

Concentration (mg ml ⁻¹)	$V_{oc}\left(\mathrm{V} ight)$	J_{sc} (mA cm ⁻²)	FF	PCE (%)
0.0	1.217	14.69	0.681	12.18
0.6	1.234	14.70	0.730	13.24
1.2	1.254	14.84	0.726	13.51
1.8	1.216	14.75	0.733	13.15
2.4	1.204	14.66	0.711	12.55

different precursor solution concentrations.

Concentration (mg ml ⁻¹)	$V_{oc}\left(\mathrm{V} ight)$	J_{sc} (mA cm ⁻²)	FF	PCE (%)
0.0	1.217	14.69	0.681	12.18
0.3	1.250	14.77	0.718	13.26
0.6	1.261	14.88	0.740	13.89
0.9	1.249	14.73	0.738	13.58
1.2	1.229	14.64	0.690	12.42

Table S5. Photovoltaic parameters of $CsPbI_2Br$ C-IPSCs passivated by the P-F-PEAI with different precursor solution concentrations.

 $\label{eq:second} \textbf{Table S6.} Photovoltaic parameters of CsPbI_2Br C-IPSCs passivated by the P-F-PEABr$

with	different	precursor	solution	concentrations.	

Concentration (mg ml ⁻¹)	$V_{oc}\left(\mathrm{V} ight)$	J_{sc} (mA cm ⁻²)	FF	PCE (%)
0.0	1.217	14.69	0.681	12.18
0.5	1.235	14.80	0.739	13.51
1.0	1.269	14.91	0.738	13.97
1.5	1.253	14.72	0.710	13.10
2.0	1.211	14.65	0.718	12.74

No	Device structure	CsPbI ₂ Br annealing	V _{oc}	J_{sc}	FF	PCE	Ref
110.		temperature	(V)	(mA cm ⁻²)		(%)	itel.
1	ITO/SnO ₂ /ZnO/CsPbI ₂ Br/P-F-PEABr/carbon	120	1.269	14.91	0.738	13.97	This work
2	FTO/c-TiO2/CsPbI2Br/carbon	340	1.15	13.54	0.642	10.0	3
3	ITO/SnO ₂ /Nb-CsPbI ₂ Br/carbon	160	1.20	12.06	0.72	10.42	4
4	$FTO/Nb_2O_5/Cs_{0.99}Rb_{0.01}PbI_2Br/carbon$	350	1.24	14.02	0.69	12	5
5	FTO/c-TiO2/m-TiO2/CsPbI2Br/P3HT-MWCNT/carbon	280	1.21	13.35	0.62	10.01	6
6	ITO/SnO ₂ /CsPbI ₂ Br/PMMA/carbon	260	1.202	12.64	0.71	10.95	7
7	FTO/c-TiO ₂ /m TiO ₂ /Al ₂ O ₃ /NiO/carbon (embed CsPbI ₂ Br)	100	0.944	14.33	0.6250	8.44	7
8	ITO/SnO ₂ /CsPbI ₂ Br/carbon	180	1.187	12.91	0.661	10.13	9
9	FTO/c-TiO2/CsPbI2Br/carbon	280	1.15	13.87	0.64	10.21	10
10	ITO/SnO ₂ /CsPbI ₂ Br/carbon	150	1.14	14.25	0.6412	10.44	11
11	ITO/SnO2/CsPbI2Br/Co3O4/carbon	260	1.187	13.09	0.7212	11.21	12
12	ITO/SnO ₂ /CsPbI ₂ Br/SnPc/carbon	120	1.244	13.69	0.669	11.39	1
13	ITO/SnO2/KOH/CsPbI2Br/carbon	150	1.20	14.24	0.6871	11.78	13
14	$FTO/c\text{-}TiO_2/m\text{-}TiO_2/CsPbI_2Br/carbon\ black/carbon$	280	1.210	14.94	0.7259	13.13	14
15	ITO/c-TiO ₂ /m-TiO ₂ /Al ₂ O ₃ /NiO/carbon (embed CsPb _{0.98} Mg _{0.02} I ₂ Br)	280	1.063	14.75	0.69	10.8	15
16	ITO/SnO ₂ /CsPbI ₂ Br/CuPc derivative/carbon	120	1.223	13.61	0.663	11.04	2
17	FTO/TiO2 NRAs/CsCl/CsPbI2Br/carbon	260	1.15	14.39	0.691	11.45	16
18	$FTO/c\text{-}TiO_2/m\text{-}TiO_2/CsPb_{0.98}La_{0.02}I_2Br/carbon$	260	1.12	11.66	0.6124	8.03	17
19	FTO/SnO ₂ /CsPbI ₂ Br (PbI ₂ -rich)/carbon	280	1.23	15.46	0.64	12.19	18
20	FTO/c-TiO ₂ /m-TiO ₂ /Al ₂ O ₃ /NiO/carbon (embed CsPb _{0.5} Sn _{0.5} I ₂ Br)	80	0.62	20.1	0.65	8.10	19
21	FTO/c-TiO ₂ /CsPbI ₂ Br/CuPc/PCCE	160	1.22	14.33	0.75	13.16	20
22	FTO/SnO ₂ /CsPbI ₂ Br with PANI/carbon	280	1.33	14.29	0.7096	13.52	21
23	ITO/SnO2/CsPbI2Br/BrAL/carbon	260	1.205	13.68	0.688	11.34	22
24	FTO/c-TiO ₂ /CsPbI ₂ Br (PbI ₂ -rich)/carbon	250	1.19	14.6	0.736	12.78	23
25	FTO/c-TiO ₂ /BMIMPF ₆ /CsPbI ₂ Br/carbon	250	1.22	14.33	0.7527	13.19	24
26	ITO/SnO ₂ /CsPbI ₂ Br/PEAI/carbon	280	1.3	14.508	0.7102	13.38	25
27	FTO/c-TiO ₂ /CsPbI ₂ Br/MABr/carbon	200	1.207	16.62	0.74	14.84	26

Table S7. Performance comparisons of $CsPbI_2Br$ C-IPSCs reported to date.

28	FTO/c-TiO ₂ /CsPbI ₂ Br/HTAB/carbon	270	1.26	14.1	0.806	14.3	27
29	$FTO/c\text{-}TiO_2/m\text{-}TiO_2/CsPbI_2Br$ with NaSCN/carbon	270	1.267	14.31	0.8066	14.63	28
30	$FTO/c\text{-}TiO_2/CsPbI_2Br/carbon$	160	1.17	14.84	0.7382	12.82	29
31	FTO/c-TiO ₂ /CsPbI ₂ Br/NPTMS/carbon	300	1.134	14.78	0.61	10.22	30
32	$ITO/SnO_2/SnCl_2/CsPbI_2Br/Cs_2PtI_6/carbon$	160	1.28	14.85	0.72	13.69	31
33	$FTO/c\text{-}TiO_2/TiCl_4\text{-}TiCl_3/CsPbI_2Br/carbon$	270	1.28	14.21	0.794	14.46	32
34	$FTO/SnO_2/SnCl_2/CsPbI_2Br/carbon$	160	1.22	14.83	0.72	13.01	33
35	$FTO/c\text{-}TiO_2/CsPbI_2Br \ with \ PVP/Spiro-OMeTAD/carbon$	160	1.01	18.47	0.5635	10.47	34
36	FTO/SnO2/CsPbI2Br/TBAI/carbon	280	1.23	14.34	0.70	12.29	35
37	FTO/c-TiO ₂ /CsPbI ₂ Br with Mg(Ac) ₂ /carbon	280	1.214	14.18	0.7590	13.08	36
38	$FTO/SnO_2/CsPbI_2Br/delta-2:2-bis~(1,3-dithiazole)/carbon$	160	1.26	14.74	0.74	13.78	37
39	FTO/c-TiO ₂ /m-TiO ₂ /CsPbI ₂ Br/CNTs	250	1.12	14.17	0.712	11.31	38
40	$ITO/SnO_2/SnCl_2/CsPbI_2Br/BMIMBF_4/carbon$	160	1.27	14.68	0.75	14.03	39
41	ITO/SnO ₂ /CsPbI ₂ Br with MAAc/carbon	280	1.27	14.2	0.618	11.2	40
42	$FTO/Nb_2O_5/Cs_{0.99}Rb_{0.01}PbI_2Br/carbon$	150	1.23	13.8	0.66	11.2	5
43	$FTO/c\text{-}TiO_2/CsPbI_2Br/carbon$	250	1.164	16.09	0.71	13.30	41
44	$ITO/c\text{-}TiO_2/CsPbI_2Br/ATHPBr/carbon$	160	1.30	14.28	0.7811	14.50	42
45	FTO/c-TiO ₂ /m-TiO ₂ /CsPbI ₂ Br with MPA-CdSe QDs/carbon	270	1.25	14.47	0.801	14.49	43
46	FTO/c-TiO2/CsPbI2Br/MoO2&PTAA/carbon	150	1.18	13.93	0.7852	12.91	44
47	$FTO/SnO_2/CsPbI_2Br \ with \ PA/carbon$	130	1.28	13.64	0.625	10.95	45
48	$FTO/c\text{-}TiO_2/m\text{-}TiO_2/CsPbI_2Br/Cs_2SnI_6/carbon$	270	1.267	14.51	0.7981	14.67	46
49	FTO/c-TiO2/CsPbI2Br/carbon	300	1.09	16.59	0.7240	13.07	47
50	FTO/c-TiO2/CsPbI2Br/carbon	250	1.312	15.70	0.74	15.24	48

Device	Scan	V_{oc}	J_{sc}	FE	PCE	ні	
Device	direction	(V)	(mA cm ⁻²)	FF	(%)	пі	
	RS	1.217	14.69	0.681	12.18	0.102	
Kelerence	FS	1.208	14.46	0.626	10.94	0.102	
	RS	1.244	14.81	0.720	13.27	0.026	
PEAI	FS	1.222	14.60	0.717	12.79	0.036	
	RS	1.254	14.84	0.726	13.51	0.022	
PEABr	FS	1.247	14.68	0.722	13.22	0.022	
	RS	1.261	14.88	0.740	13.89	0.025	
Ρ-Γ-ΡΕΑΙ	FS	1.253	14.72	0.727	13.41	0.055	
DEDEAD.	RS	1.269	14.91	0.738	13.97	0.010	
r-r-reabr	FS	1.265	14.79	0.732	13.70	0.019	

Table S8. Photovoltaic parameters of carbon-based $CsPbI_2Br PSCs$ measured under the *RS* and *FS* directions.

Sample	E_{offset}	Eonset	Eg	W_F	VBM	CBM
Reference	16.87	1.71	1.88	-4.35	-6.06	-4.18
PEAI	17.07	1.83	1.87	-4.15	-5.98	-4.11
PEABr	17.13	1.85	1.89	-4.09	-5.94	-4.05
P-F-PEAI	17.20	1.86	1.87	-4.02	-5.88	-4.01
P-F-PEABr	17.26	1.87	1.89	-3.96	-5.83	-3.94

Table S9. Detailed parameters derived from the UPS spectra for reference and passivated CsPbI₂Br films.

Table S10. Fitting parameters of TPV of reference and passivated devices.

Derive	4	$ au_3$	$ au_3$	4	$ au_4$	$ au_4$	$ au_{TPV}$
Device	A_3 (ms) (%)	A_4	(ms)	(%)	(ms)		
Reference	0.87	1.12	0.12	0.32	22.98	0.88	20.42
PEAI	1.17	0.89	0.13	0.37	18.45	0.87	16.13
PEABr	1.76	0.54	0.18	0.24	17.91	0.82	14.77
P-F-PEAI	0.64	1.58	0.16	0.45	12.17	0.84	10.52
P-F-PEABr	0.24	0.90	0.03	0.75	10.51	0.97	10.25

Table S11. Fitting values of different parameters obtained from the Nyquist plots of18/22

Device	R_s	<i>R</i> _{tra}	R _{rec}	CPE_{tra} -T	CPE _{tra} -P	CPE_{rec} -T	CPE _{rec} -P
	$(\Omega \cdot cm^2)$	$(\Omega \cdot cm^2)$	$(\Omega \cdot cm^2)$	(nF cm ⁻²)		(×10 ⁶ nF cm ⁻²)	
Reference	2.59	163.4	583.38	215.9	0.950	1.31	0.552
PEAI	2.17	144.0	605.20	110.4	0.998	1.76	0.607
PEABr	2.14	126.7	700.56	211.3	0.937	2.31	0.480
P-F-PEAI	1.55	111.0	1069.11	312.0	0.926	2.60	0.460
P-F-PEABr	1.04	92.3	1089.00	104.4	0.999	3.05	0.517

reference and passivated devices measured at a bias of 1.20 V under light illumination.

Table S12. The n and α values of reference and passivated devices extracted from

Figure	5f a:	nd S1	4.
--------	--------------	-------	----

Device	Reference	PEAI	PEABr	P-F-PEAI	P-F-PEABr
n	1.89	1.71	1.69	1.67	1.63
α	0.975	0.981	0.983	0.984	0.986

References

- X. Zhang, N. Gao, Y. Li, L. Xie, X. Yu, X. Lu, X. Gao, J. Gao, L. Shui, S. Wu and J.-M. Liu, *ACS Appl. Energy Mater.*, 2020, **3**, 7832-7843.
- 2 X. Zhang, J. Yang, L. Xie, X. Lu, X. Gao, J. Gao, L. Shui, S. Wu and J.-M. Liu, Dye. Pigm., 2021, 186, 109024.
- 3 C. Dong, X. Han, Y. Zhao, J. Li, L. Chang and W. Zhao, Sol. RRL, 2018, 2, 1800139.
- 4 Z. Guo, S. Zhao, A. Liu, Y. Kamata, S. Teo, S. Yang, Z. Xu, S. Hayase and T. Ma, ACS Appl. Mater. Interfaces, 2019, 11, 19994-20003.

- 5 Y. Guo, F. Zhao, J. Tao, J. Jiang, J. Zhang, J. Yang, Z. Hu and J. Chu, *ChemSusChem*, 2019, **12**, 983-989.
- 6 G. Wang, J. Liu, K. Chen, R. Pathak, A. Gurung and Q. Qiao, J. Colloid Interf. Sci., 2019, 555, 180-186.
- X. Zhang, Y. Zhou, Y. Li, J. Sun, X. Lu, X. Gao, J. Gao, L. Shui, S. Wu and J.-M.
 Liu, J. Mater. Chem. C, 2019, 7, 3852-3861.
- 8 T. Zhang, H. Li, S. Liu, X. Wang, X. Gong, Q. Sun, Y. Shen and M. Wang, *J Phys. Chem. Lett.*, 2019, **10**, 200-205.
- 9 X. Meng, Z. Wang, W. Qian, Z. Zhu, T. Zhang, Y. Bai, C. Hu, S. Xiao, Y. Yang and S. Yang, J. Phys. Chem. Lett., 2019, 10, 194-199.
- 10 C. Dong, X. Han, W. Li, Q. Qiu and J. Wang, Nano Energy, 2019, 59, 553-559.
- Z. Ye, J. Zhou, J. Hou, F. Deng, Y.-Z. Zheng and X. Tao, Sol. RRL, 2019, 3, 1900109.
- Y. Zhou, X. Zhang, X. Lu, X. Gao, J. Gao, L. Shui, S. Wu and J.-M. Liu, *Sol. RRL*, 2019, 3, 1800315.
- 13 F. Deng, X. Li, X. Lv, J. Zhou, Y. Chen, X. Sun, Y.-Z. Zheng, X. Tao and J.-F. Chen, ACS Appl. Energy Mater., 2020, 3, 401-410.
- 14 S. Gong, H. Li, Z. Chen, C. Shou, M. Huang and S. Yang, ACS Appl. Mater. Interfaces, 2020, 12, 34882-34889.
- S. Liu, L. Guan, T. Zhang, X. Gong, X. Zhao, Q. Sun, X. Shai, X. L. Zhang, X.
 Xiao, Y. Shen and M. Wang, *Appl. Mater. Today*, 2020, 20, 100644.
- W. Cai, Y. Lv, K. Chen, Z. Zhang, Y. Jin and X. Zhou, *Energy Fuels*, 2020, 34, 11670-11678.
- 17 S. Chen, T. Zhang, X. Liu, J. Qiao, L. Peng, J. Wang, Y. Liu, T. Yang and J. Lin, J. Mater. Chem. C, 2020, 8, 3351-3358.
- C. Liu, M. Wu, Y. Wu, D. Wang and T. Zhang, J. Power Sources, 2020, 447, 227389.
- H. Ban, Q. Sun, T. Zhang, H. Li, Y. Shen and M. Wang, Sol. RRL, 2020, 4, 1900457.
- 20 P. Xie, G. Zhang, Z. Yang, Z. Pan, Y. Fang, H. Rao and X. Zhong, *Sol. RRL*, 2020, 20/22

4, 2000431.

- 21 C. Liu, J. He, M. Wu, Y. Wu, P. Du, L. Fan, Q. Zhang, D. Wang and T. Zhang, Sol. RRL, 2020, 4, 2000016.
- 22 Y. Li, J. Yang, L. Xie, Y. Li, X. Liang, X. Lu, X. Gao, J. Gao, L. Shui, S. Wu and J.-M. Liu, ACS Appl. Energy Mater., 2021, 4, 5415-5423.
- 23 K. Wang, T. You, R. Yin, B. Fan, J. Liu, S. Cui, H. Chen and P. Yin, ACS Appl. Energy Mater., 2021, 4, 3508-3517.
- R. Yin, K.-X. Wang, S. Cui, B.-B. Fan, J.-W. Liu, Y.-K. Gao, T.-T. You and P.-G.
 Yin, ACS Appl. Energy Mater., 2021, 4, 9294-9303.
- 25 Y. Wu, Q. Zhang, L. Fan, C. Liu, M. Wu, D. Wang and T. Zhang, ACS Appl. Energy Mater., 2021, 4, 5583-5589.
- 26 W. Zhu, W. Chai, D. Chen, J. Ma, D. Chen, H. Xi, J. Zhang, C. Zhang and Y. Hao, ACS Energy Lett., 2021, 6, 1500-1510.
- G. Zhang, P. Xie, Z. Huang, Z. Yang, Z. Pan, Y. Fang, H. Rao and X. Zhong, *Adv. Funct. Mater.*, 2021, **31**, 2011187.
- 28 Z. Yang, G. Zhang, J. Zhang, Z. Pan, S. Yang, B. Liu, H. Rao and X. Zhong, *Chem. Eng. J.*, 2022, **430**, 133083.
- 29 W. Su, X. Han, J. Feng, Z. Zhu, H. Huang, J. Li, T. Yu, Z. Li and Z. Zou, *Energy Fuels*, 2021, **35**, 11488-11495.
- 30 J. Yu, W. Li, K. Zhang and X. Han, J. Mater. Sci.: Mater. Electron., 2021, 32, 20936-20945.
- Q. Han, S. Yang, L. Wang, F. Yu, X. Cai and T. Ma, J. Colloid Interf. Sci., 2022,
 606, 800-807.
- 32 W. Wang, Y. Lin, G. Zhang, C. Kang, Z. Pan, X. Zhong and H. Rao, J. Energy Chem., 2021, 63, 442-451.
- 33 Q. Han, F. Yu, L. Wang, S. Yang, X. Cai, X. Meng, O. Yūta, K. Takeshi, C. Zhang and T. Ma, *J. Power Sources*, 2021, **516**, 230676.
- 34 S. Ullah, P. Yang, J. Wang, L. Liu, S.-E. Yang, T. Xia and Y. Chen, *J. Solid State Chem.*, 2022, **305**, 122656.
- S. Zheng, H. Wang, P. Wei, H. Chen and Y. Xie, *Sol. Energy*, 2021, 230, 666-674.
 21/22

- 36 K. Zhang, W. Li, J. Yu and X. Han, *Sol. Energy*, 2021, **222**, 186-192.
- Q. Han, S. Yang, L. Wang, F. Yu, C. Zhang, M. Wu and T. Ma, *Sol. Energy*, 2021, 216, 351-357.
- Z. Dong, W. Li, H. Wang, X. Jiang, H. Liu, L. Zhu and H. Chen, *Sol. RRL*, 2021, 5, 2100370.
- 39 F. Yu, Q. Han, L. Wang, S. Yang, X. Cai, C. Zhang and T. Ma, *Sol. RRL*, 2021, 5, 2100404.
- 40 X. Li, Y. Zhang, G. Liu, Z. Zhang, L. Xiao, Z. Chen and B. Qu, *ACS Appl. Energy Mater.*, 2021, **4**, 13444-13449.
- 41 Z. Zhang, Y. Ba, D. Chen, J. Ma, W. Zhu, H. Xi, D. Chen, J. Zhang, C. Zhang and Y. Hao, *iScience*, 2021, 24, 103365.
- Z. Yan, D. Wang, Y. Jing, X. Wang, H. Zhang, X. Liu, S. Wang, C. Wang, W. Sun,
 J. Wu and Z. Lan, *Chem. Eng. J.*, 2022, 433, 134611.
- 43 S. Xu, C. Kang, Z. Huang, Z. Zhang, H. Rao, Z. Pan and X. Zhong, *Sol. RRL*, 2022, 6, 2100989.
- D. S. Lee, M. J. Ki, H. J. Lee, J. K. Park, S. Y. Hong, B. W. Kim, J. H. Heo and S. H. Im, ACS Appl. Mater. Interfaces, 2022, 14, 7926-7935.
- X. Xu, W. Qin, S. Liu, C. Xing, G. Ge, D. Wang and T. Zhang, *Org. Electron.*, 2022, 103, 106463.
- 46 G. Zhang, J. Zhang, Y. Liao, Z. Pan, H. Rao and X. Zhong, *Chem. Eng. J.*, 2022, 440, 135710.
- J. Lv, W. Zhao, W. Li, J. Yu, M. Zhang, X. Han and T. Tanaka, *J. Mater. Chem. C*, 2022, **10**, 4276-4285.
- W. Zhu, J. Ma, W. Chai, T. Han, D. Chen, X. Xie, G. Liu, P. Dong, H. Xi, D. Chen,
 J. Zhang, C. Zhang and Y. Hao, *Sol. RRL*, 2022, 6, 2200020.