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I. Curie temperature. The evolution of magnetization as the function of temperature is 

simulated via Monte Carlo simulation based on the Heisenberg type Hamiltonian. A supercell of 

12×12×1 containing 288 Cr atoms is used for the Monte Carlo simulation. Steps for both 

achieving thermal equilibrium and sampling by Metropolis algorithm are set to 105 steps. The 

Heisenberg type Hamiltonian of TiCr2N4 can be described as 
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where, J is the exchange parameter between site i and j.  and  is the single-ion anisotropy iA izr

energy and the unit vector of easy magnetization axis of Cr atom, respectively. Five different 

magnetic structures (Fig. S1) are considered for calculating the exchange parameters.

FIG. S1. Schematic of the five magnetic structures of monolayer TiCr2N4. (a) FM, (b) inter-AFM, 

(c) intra-SAFM1, (d) intra-SAFM2, and (e) intra-ZAFM, respectively. (f) Schematic of the 

different exchange interactions. 

The exchange parameters are obtained from magnetic energies calculations, which is written 

as
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where, Jintra and Jinter correspond to exchange interactions between atoms from intralayer and 

interlayers, respectively. J1 and J2 correspond to the first- and second-nearest neighboring 

exchange interactions. 
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FIG. S2. The energy difference between the five magnetic structures and FM structure.

Table. S1. The calculated exchange parameters of TiCr2N4 monolayer.

 intra
1J 2

intraJ inter
1J 2

interJ

 (meV/Cr)J 36.3 2.4 -6.8 2.3

FIG. S3. (a) The phonon dispersion of TiCr2N4 monolayer. (b) The ab-initio molecular dynamic 

simulation of TiCr2N4 monolayer under 300 K and 700 K.
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FIG. S4. (a) Energy difference between the FM structure and the four AFM structures under 

electrostatic doping. (b) MAE of TiCr2N4 monolayer under 0.4 electron and hole doping per unit 

cell. The 0° and 90° correspond to the in-plane and out-of-plane directions, respectively.
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FIG. S5. Calculated MR ratio of monolayer TiCr2N4 under electrostatic doping.

FIG. S6. Number of carriers near Fermi level under different magnetization angle between the top 

and bottom Cr atoms.
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II. Perturbation theory analysis on magnetic anisotropy. The spin-orbit coupling (SOC) 

Hamiltonian can be expressed as
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When the magnetization direction is characterized by the Euler angle  and , one can 

obtain
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The SOC induced energy the variation on total energy comes in the second-order term of the 

perturbation
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Due to the empty spin-down states, only two types of SOC need to be considered, which are 

 and . For TiCr2N4 monolayer, the occupied state is . The  u|H|o SL  u|H|o SL
ge 

unoccupied states are , , and , respectively. Based on the occupancy, the variation on 
gt2


ge 

gt2

SOC energy is
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, which shows no dependence on the angle . Then, MAE can be obtained via φ

, where  is treated as is a normalized θcosAEE xθ
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parameter. 

III. Band gap induced variation on MR ratio. For semiconductors, conductivity can be 

calculated by , where n is the carrier concentration, q is the charge of an electron or hole, =nq 

and  is the carrier mobility, respectively. The variation on carrier concentration induced by 

change of band gaps is . Then, the MR ratio can be estimated via/2
0

gap BE k Tn n e
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FIG. S7. (a) The value of band gaps under different  and (b) evaluation of MR ratio by using M

band gaps of the TiCr2N4 monolayer. Comparation of MR ratio obtained from different methods at 

(c)  and (d) , respectively0  M 30  M

IV. Projected density of states and band structures.
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Fig. S8. Projected density of states (DOS) of TiCr2N4 monolayer under AP configuration.

Fig. S9. Donation of the top and bottom atoms for the band structures under AP configuration.


