Supplementary Information

Atomic order transition of TiNiPt nanoparticles supported on

carbon nanotubes for stable hydrogen evolution reaction

Mengni Wei^a, Mengdi He^a, Xinyu Wei^a, Shen Gong^{a,b,c,*}, Liuxiong Luo^a,

Teng Li^a, Shanguang Tang^d and Zhenghong Zhu^c

a. School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083, China.

b. State Key Laboratory of Powder Metallurgy, Changsha 410083, China.

c. Department of Mechanical Engineering, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.

d. Hunan Yige Pharmaceutical Co.,Ltd, Xiangtan 411100, China. *Corresponding author: Shen Gong (gongshen011@csu.edu.cn).

Fig. S1 (a)TEM bright field image and (b) dark field image of disordered $Ti_{50}Ni_{30}Pt_{20}/CNT$

The TEM photos of disordered $Ti_{50}Ni_{30}Pt_{20}/CNT$ are shown in Fig. S1. Disordered TiNiPt alloy nanoparticles are dispersed and evenly wrapped on the surface of carbon nanotubes. Its particle size is 8-10 nm.

Fig. S2 (a)TEM bright field image and (b) dark field image of ordered $Ti_{50}Ni_{30}Pt_{20}/CNT$

Fig. S2 shows the morphological features of the ordered $Ti_{50}Ni_{30}Pt_{20}/CNT$ by TEM. The ordered TiNiPt alloy nanoparticles are uniformly supported on the surface of carbon nanotubes. Its particle size is about 9-11 nm, which is similar to that of disordered TiNiPt alloy nanoparticles. It is an effective strategy to select carbon nanotubes as carriers for interfacial confinement of alloy particles.

Fig. S3 (a) TEM high-resolution images of $O-Ti_{50}Ni_{30}Pt_{20}/CNT$. (b) FFT patterns of (a). (c,d) HADDF and EDS element mappings of $O-Ti_{50}Ni_{30}Pt_{20}/CNT$.

In Fig. S3a, lattice fringes with spacing of 0.1738 nm correspond to (210) crystal planes. In the FFT image of Fig. S4b, the appearance of superlattice diffraction points

(101), (111), etc. indicates the formation of ordered TiNiPt particles. In EDS element

mappings (Fig. S3c and d), Ti, Ni and Pt elements always appear in the same region, indicating that the particles are mainly ternary phases of TiNiPt.

Fig. S4 SEM EDS spectra and atomic ratio of a selected individual $Ti_{50}Ni_{30}Pt_{20}$ particle

Representative SEM EDS spectra of $Ti_{50}Ni_{30}Pt_{20}/CNT$ are shown in Fig. S4. The atomic ratio of Ti, Ni to Pt in this sample is 0.459:0.312:0.230, which is very close to the formulation addition of 0.5:0.3:0.2.

Fig. S5 TGA curve of $\text{O-Ti}_{50}\text{Ni}_{30}\text{Pt}_{20}/\text{CNT}$

The TGA experiments are performed on $O-Ti_{50}Ni_{30}Pt_{20}/CNT$ to determine the metal loadings. The temperature is raised from room temperature to 800°C at a heating rate of 10°C/min. The protective atmosphere is air. The loss of 66.8 wt.% is attributed to the burning of CNTs in air. Therefore, the metal loading is about 33.2 wt.%.

Fig. S6 (a, b) Electrochemical cyclic voltammetry of $D-Ti_{50}Ni_{30}Pt_{20}/CNT$ and $O-Ti_{50}Ni_{30}Pt_{20}/CNT$ in 1 M KOH. (c, d) Electrochemical cyclic voltammetry of $D-Ti_{50}Ni_{30}Pt_{20}/CNT$ and $O-Ti_{50}Ni_{30}Pt_{20}/CNT$ in 0.5 M H_2SO_4 . The scan rates are 20, 40, 60, 80 and 100 mV s⁻¹.

To further understand the HER performance of D-Ti₅₀Ni₃₀Pt₂₀/CNT and O-Ti₅₀Ni₃₀Pt₂₀/CNT, their electrochemically active surface area (ECSA) was estimated from the electrochemical double layer capacitance (Cdl). Cdl was measured from a cyclic voltammogram (CV) in the Faraday region. The calculated Cdl of D-Ti₅₀Ni₃₀Pt₂₀/CNT and O-Ti₅₀Ni₃₀Pt₂₀/CNT are 22.32 and 20.67 mF cm⁻² in 1 M KOH. And their calculated Cdl are 6.92 and 6.53 mF cm⁻² in 0.5 M H₂SO₄.

Table S1. Summarized HER performance of commercial Pt/C, disordered and ordered TiNiPt/CNT samples in 1 M KOH.

Samples	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Exchange current density (mA cm ⁻²)
20% Pt/C	41	43.7	0.84
$D\text{-}Ti_{50}Ni_{40}Pt_{10}/CNT$	43	47.3	1.24
$D\text{-}Ti_{50}Ni_{30}Pt_{20}/CNT$	25	30.9	1.45
$D\text{-}Ti_{50}Ni_{20}Pt_{30}/CNT$	35	34.8	0.95
$D\text{-}Ti_{50}Ni_{10}Pt_{40}/CNT$	38	43.1	1.43
$O\text{-}Ti_{50}Ni_{40}Pt_{10}/CNT$	25	32.4	1.65
$O\text{-}Ti_{50}Ni_{30}Pt_{20}/CNT$	21	25.7	1.46
$O\text{-}Ti_{50}Ni_{20}Pt_{30}/CNT$	30	37.5	1.25
O-Ti ₅₀ Ni ₁₀ Pt ₄₀ /CNT	40	31.3	1.58

Table S2. Summarized HER performance of commercial Pt/C, disordered and ordered TiNiPt/CNT samples in 0.5 M H_2SO_4 .

Samples	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Exchange current density (mA cm ⁻²)
20% Pt/C	40	38.4	0.531
$D\text{-}Ti_{50}Ni_{40}Pt_{10}/CNT$	49	45.5	0.772
D-Ti ₅₀ Ni ₃₀ Pt ₂₀ /CNT	39	31.6	0.613
$D\text{-}Ti_{50}Ni_{20}Pt_{30}/CNT$	48	38.4	0.721
$D\text{-}Ti_{50}Ni_{10}Pt_{40}/CNT$	44	44.6	0.509
$O\text{-}Ti_{50}Ni_{40}Pt_{10}/CNT$	52	43.8	0.581
$O\text{-}Ti_{50}Ni_{30}Pt_{20}/CNT$	36	28.7	0.565
$O\text{-}Ti_{50}Ni_{20}Pt_{30}/CNT$	43	37.4	0.553
O-Ti ₅₀ Ni ₁₀ Pt ₄₀ /CNT	47	43.1	0.502

Table S3. Comparison of HER performance of recently reported catalysts.						
Catalyst	Overpotent ial at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Exchange current density (mA cm ⁻²)	Electrolyte	Ref.	
20% Pt/C	41	43.7	0.84	1 M KOH	This work	
O-Ti ₅₀ Ni ₃₀ Pt ₂₀ /CNT	21	25.7	1.46	1 M KOH	This work	
Pt-PdO/C	29	36	1.125	1 M KOH	1	
PtSA–Co(OH)₂@Ag NW	29	35.72	0.82	1 M KOH	2	
Rh NSs	37.8	98.3	3.68	1 M KOH	3	
Ru@MWCNT	17	27	2.4	1 M KOH	4	
RuP ₂ @NPC/CNT	12	30	4.0	1 M KOH	5	
Ru-Mo ₂ C@CNT	15	26	4.3	1 M KOH	6	
IrPdPb WNNs	21	66	4.87	1 M KOH	7	
PtCu-MoO ₂ @C	24	37	2.25	1 M KOH	8	
(Ni,Co)₃CNSs@NC	71	72	0.61	1 M KOH	9	
2D-PtND/LDH	25	87	1.65	1 M KOH	10	
CoP@N,S-3D-GN	118	50	0.022	0.5 M H ₂ SO ₄	11	
Pt-TiO ₂ -x NSs	36	32.1	1.04 ± 0.3	0.5 M H ₂ SO ₄	12	
PtW NPs/C	19.4	27.8	1.62	0.5 M H ₂ SO ₄	13	
N-Co-S/G	67.7	56.3	0.901	0.5 M H ₂ SO ₄	14	
Mo ₂ C/CNT	121	77	2.02	0.5 M H ₂ SO ₄	15	
MRNS	29.4	30.9	1.12	0.5 M H ₂ SO ₄	16	
Pt-MoS ₂ -1h	78.5	41	0.3375	0.5 M H ₂ SO ₄	17	
Pt-MoS ₂ /MWCNT fiber	40	30	0.4554	0.5 M H ₂ SO ₄	18	
WC/WO _{3-x} -900	107	59.3	0.253	0.5 M H ₂ SO ₄	19	
Co-MoS ₂ /G	78.1	40.0	0.0917	0.5 M H ₂ SO ₄	20	
C/Ni–AuPt	131	66	0.125	0.5 M H ₂ SO ₄	21	
20% Pt/C	40	38.4	0.531	0.5 M H ₂ SO ₄	This work	
O-Ti ₅₀ Ni ₃₀ Pt ₂₀ /CNT	36	28.7	0.565	0.5 M H ₂ SO ₄	This work	

Fig. S7 DFT atomic models for different atomic ratios and positions

First-principles calculations are used to assist in the study of the effects of atomic positions and ratios on the performance of samples. A series of atomic models have been established, including different atomic ratios and positions. The model energy is lowest when the atom is in a highly symmetrical position. The calculation results of this model are placed in the main text.

	ΔG _{HO-H} (eV)	ΔG _{H*} (eV)	Ref.
O-Ti ₅₀ Ni ₃₀ Pt ₂₀ /CNT	0.28	-0.37	This work
NiO/Pt	0.58	-0.06	22
Pt ₂₂ Ru ₃₃ /BP	-	-0.12	23
Pt/Co _{0.85} Se	0.443	Co site -0.083	24
		Pt site -0.079	
Pt/NiFe-LDH	-0.41	-0.15	25
Ni ₂ P/Ni(PO ₃) ₂	-0.33	-0.05	26
TFPB-PAM	-	0.0705	27
Pt SACs	-	Pt/basal graphene 0.57	20
		Pt/edge graphene -0.26	28
Pt _{sa} -Ni	0.08	-0.38	29

Table S4. Comparison of free energies $\Delta G_{HO\text{-}H}$ and ΔG_{H^*} in HER of catalysts.

References

- 1. R. Samanta, R. Mishra and S. Barman, *ACS Sustainable Chemistry & Engineering*, 2022, **10**, 3704-3715.
- 2. K. L. Zhou, C. Wang, Z. Wang, C. B. Han, Q. Zhang, X. Ke, J. Liu and H. Wang, *Energy & Environmental Science*, 2020, **13**, 3082-3092.
- Z. Zhang, G. Liu, X. Cui, Y. Gong, D. Yi, Q. Zhang, C. Zhu, F. Saleem, B. Chen, Z. Lai, Q. Yun, H. Cheng, Z. Huang, Y. Peng, Z. Fan, B. Li, W. Dai, W. Chen, Y. Du, L. Ma, C.-J. Sun, I. Hwang, S. Chen, L. Song, F. Ding, L. Gu, Y. Zhu and H. Zhang, *Science Advances*, 7, eabd6647.
- 4. D. H. Kweon, M. S. Okyay, S.-J. Kim, J.-P. Jeon, H.-J. Noh, N. Park, J. Mahmood and J.-B. Baek, *Nature Communications*, 2020, **11**, 1278.
- 5. F. Zhou, R. Sa, X. Zhang, S. Zhang, Z. Wen and R. Wang, *Applied Catalysis B: Environmental*, 2020, **274**, 119092.
- X. Wu, Z. Wang, D. Zhang, Y. Qin, M. Wang, Y. Han, T. Zhan, B. Yang, S. Li, J. Lai and L. Wang, Nature Communications, 2021, 12, 4018.
- 7. R.-L. Zhang, J.-J. Duan, L.-P. Mei, J.-J. Feng, P.-X. Yuan and A.-J. Wang, *Journal of Colloid and Interface Science*, 2020, **580**, 99-107.
- 8. C. Zhang, P. Wang, W. Li, Z. Zhang, J. Zhu, Z. Pu, Y. Zhao and S. Mu, *Journal of Materials Chemistry A*, 2020, **8**, 19348-19356.
- 9. M. Yao, B. Wang, N. Wang, S. Komarneni, Y. Chen, J. Wang, X. Niu and W. Hu, ACS Sustainable Chemistry & Engineering, 2020, **8**, 5287-5295.
- 10. Y.-R. Hong, S. Dutta, S. W. Jang, O. F. Ngome Okello, H. Im, S.-Y. Choi, J. W. Han and I. S. Lee, *Journal of the American Chemical Society*, 2022, **144**, 9033-9043.
- 11. C. Karaman, O. Karaman, N. Atar and M. L. Yola, *Electrochimica Acta*, 2021, **380**, 138262.
- 12. K. M. Naik, E. Higuchi and H. Inoue, *Nanoscale*, 2020, **12**, 11055-11062.
- D. Kobayashi, H. Kobayashi, D. Wu, S. Okazoe, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, S. Kawaguchi, Y. Kubota, S. M. Aspera, H. Nakanishi, S. Arai and H. Kitagawa, *Journal of the American Chemical Society*, 2020, **142**, 17250-17254.
- 14. P. Sabhapathy, I. Shown, A. Sabbah, P. Raghunath, J.-L. Chen, W.-F. Chen, M.-C. Lin, K.-H. Chen and L.-C. Chen, *Nano Energy*, 2021, **80**, 105544.
- 15. S. Hussain, I. Rabani, D. Vikraman, A. Feroze, K. Karuppasamy, Z. u. Haq, Y.-S. Seo, S.-H. Chun, H.-S. Kim and J. Jung, *ACS Sustainable Chemistry & Engineering*, 2020, **8**, 12248-12259.
- 16. J. Kim, K. Kani, J. Kim, J. S. Yeon, M.-K. Song, B. Jiang, J. Na, Y. Yamauchi and H. S. Park, *Journal of Industrial and Engineering Chemistry*, 2021, **96**, 371-375.
- 17. L. Mei, X. Gao, Z. Gao, Q. Zhang, X. Yu, A. L. Rogach and Z. Zeng, *Chemical Communications*, 2021, **57**, 2879-2882.
- B. Chen, G. Sun, J. Wang, G. Liu, C. Tan, Y. Chen, H. Cheng, J. Chen, Q. Ma, L. Huang, P. Chen and H. Zhang, *Chemical Communications*, 2020, 56, 5131-5134.
- 19. F. Wang, B. Dong, J. Wang, N. Ke, C. Tan, A. Huang, Y. Wu, L. Hao, L. Yin, X. Xu, Y. Xian and S. Agathopoulos, *Journal of Advanced Ceramics*, 2022, **11**, 1208-1221.
- 20. S. Sarwar, M.-C. Lin, M. R. Ahasan, Y. Wang, R. Wang and X. Zhang, *Advanced Composites* and *Hybrid Materials*, 2022, DOI: 10.1007/s42114-022-00424-3.
- 21. Y. Yu, S. J. Lee, J. Theerthagiri, S. Fonseca, L. M. C. Pinto, G. Maia and M. Y. Choi, *Chemical*

Engineering Journal, 2022, **435**, 134790.

- 22. Z.-J. Chen, G.-X. Cao, L.-Y. Gan, H. Dai, N. Xu, M.-J. Zang, H.-B. Dai, H. Wu and P. Wang, ACS *Catalysis*, 2018, **8**, 8866-8872.
- Y. Li, W. Pei, J. He, K. Liu, W. Qi, X. Gao, S. Zhou, H. Xie, K. Yin, Y. Gao, J. He, J. Zhao, J. Hu, T.-S. Chan, Z. Li, G. Zhang and M. Liu, *ACS Catalysis*, 2019, 9, 10870-10875.
- 24. K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng, Y. Zhao, Y.-R. Lu, T.-S. Chan, F. M. F. de Groot and Y. Tan, *Nature Communications*, 2019, **10**, 1743.
- 25. Y. Zhao, Y. Gao, Z. Chen, Z. Li, T. Ma, Z. Wu and L. Wang, *Applied Catalysis B: Environmental*, 2021, **297**, 120395.
- 26. Z. Xiao, M. Yang, C. Liu, B. Wang, S. Zhang, J. Liu, Z. Xu, R. Gao, J.-J. Zou, A. Tang and H. Yang, *Nano Energy*, 2022, **98**, 107233.
- 27. A. Pradhan and R. N. Manna, ACS Applied Polymer Materials, 2021, **3**, 1376-1384.
- C. Tsounis, B. Subhash, P. V. Kumar, N. M. Bedford, Y. Zhao, J. Shenoy, Z. Ma, D. Zhang, C. Y. Toe, S. Cheong, R. D. Tilley, X. Lu, L. Dai, Z. Han and R. Amal, *Advanced Functional Materials*, 2022, n/a, 2203067.
- 29. K. L. Zhou, Z. Wang, C. B. Han, X. Ke, C. Wang, Y. Jin, Q. Zhang, J. Liu, H. Wang and H. Yan, *Nature Communications*, 2021, **12**, 3783.