Supporting Information

In-situ Preparation Bi₂O₂Se/MoO₃ Thin-Film Heterojunction Flexibility Array Photodetectors

Ming Yang^{a,b,e}*, Xiaoqiang Zhang^a, Hongxi Zhou^{b,c}, Gui Fu^a, Xin Zhou^{b,c}, Yunlun Lian^b, Jinxin Hao^d, He Yu^{b,c}, Xinyu Zhu^a and Jun Wang^{a,b,c,*}

^a Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Guanghan, 618307, P.R. China ^b School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 610054, P.R. China ^c State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China ^d Engineering Techniques Training Center, Civil Aviation University of China, Tianjin 300300, P.R. China ^e Sichuan Province Engineering Technology Research Center of General Aircraft Maintenance, Civil Aviation Flight University of China, Guanghan 618307, P.R. China Corresponding Authors: E-mail:yangming932@163.com (M. Yang); wjun@uestc.edu.cn (J. Wang)

Figure S1. Schematic diagram of the fabrication process of Bi_2O_2Se/MoO_3 composite thin film and device by two-step thermal deposition method.

Figure S2. Optical image of Bi₂O₂Se/MoO₃ thin film array heterojunction device on mica.

Figure S3. Cross section SEM image of the fabricated Bi_2O_2Se/MoO_3 thin film heterojunction device.

Figure S4. The EDS cross section element mapping image of the fabricated Bi_2O_2Se/MoO_3 thin film heterojunction device.

Figure S5. The SEM image (a) and EDS pattern (b) of Bi₂O₂Se/MoO₃ heterostructure.

Figure S6. Absorption curves of Bi_2O_2Se/MoO_3 and Bi_2O_2Se thin films from 300 nm to 1400 nm.

Figure S7. (a) The Bi_2O_2Se/MoO_3 thin films heterojunction device structure simulate diagram of SILVACO TCAD software. (b) The holes density diagram of Bi_2O_2Se/MoO_3 thin films heterojunction device by SILVACO TCAD software simulate @ 808 nm irradiation with different power intensity.

Figure S8. The holes distribution density diagram of Bi_2O_2Se/MoO_3 thin films heterojunction device by SILVACO TCAD software simulate under 808 nm irradiation with different power intensity (a) P1, (b) P3, (c) P2 and (d) P4. Among $P_4 > P_3 > P_2 > P_1$.

Figure S8. The holes distribution density diagram of Bi_2O_2Se/MoO_3 thin films heterojunction device by SILVACO TCAD software simulate under $V_{ds} > 0$ V with different waveband light irradiation (a) 520 nm, (b) 808 nm, (c) 980 nm and (d) 1550 nm. (e), (f) Current and holes distribution density curves of Bi_2O_2Se/MoO_3 thin films heterojunction device.

Figure S10. The band contact diagram of Bi_2O_2Se and MoO_3 materials under (a) $V_{ds} < 0$ V, (b) $V_{ds} = 0$ V and (c) $V_{ds} > 0$ V according to the band characteristics.

Figure S11. I_{ph} of Bi_2O_2Se/MoO_3 device @ 808 nm under different power densities.

Figure S12. R_i and current curves of Bi₂O₂Se/MoO₃ device at different laser power intensity.

Figure S13. τ_{on} and τ_{off} of the Bi₂O₂Se/MoO₃ heterojunction photodetector (a) @ 650 nm and (b) @ 980 nm. The τ_{on} and τ_{off} of device @ 650 nm and @ 980 nm were less than 180 and 180 µs, 300 and 500 µs, respectively.

Figure S14. The noise diagram of pure Bi₂O₂Se thin film device and Bi₂O₂Se/MoO₃ thin film heterojunction device.

Figure S15. The relationship between the R_i and D^* of the Bi_2O_2Se/MoO_3 thin film heterojunction device and the laser power density changes.