Supporting Information

In-situ Preparation Bi$_2$O$_2$Se/MoO$_3$ Thin-Film Heterojunction Flexibility Array Photodetectors

Ming Yanga,b,c,*, Xiaoqiang Zhanga, Hongxi Zhoub,c, Gui Fua, Xin Zhoub,c, Yunlun Lianb, Jinxin Haod, He Yub,c, Xinyu Zhua and Jun Wanga,b,c,*

a Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China,
Guanghan, 618307, P.R. China

b School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China
Chengdu 610054, P.R. China

c State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China,
Chengdu 610054, P.R. China

d Engineering Techniques Training Center, Civil Aviation University of China,
Tianjin 300300, P.R. China

e Sichuan Province Engineering Technology Research Center of General Aircraft Maintenance, Civil Aviation Flight University of China,
Guanghan 618307, P.R. China

Corresponding Authors:
E-mail: yangming932@163.com (M. Yang); wjun@uestc.edu.cn (J. Wang)
Figure S1. Schematic diagram of the fabrication process of $\text{Bi}_2\text{O}_2\text{Se}/\text{MoO}_3$ composite thin film and device by two-step thermal deposition method.

Figure S2. Optical image of $\text{Bi}_2\text{O}_2\text{Se}/\text{MoO}_3$ thin film array heterojunction device on mica.
Figure S3. Cross section SEM image of the fabricated Bi$_2$O$_2$Se/MoO$_3$ thin film heterojunction device.

Figure S4. The EDS cross section element mapping image of the fabricated Bi$_2$O$_2$Se/MoO$_3$ thin film heterojunction device.
Figure S5. The SEM image (a) and EDS pattern (b) of Bi$_2$O$_2$Se/MoO$_3$ heterostructure.

Figure S6. Absorption curves of Bi$_2$O$_2$Se/MoO$_3$ and Bi$_2$O$_2$Se thin films from 300 nm to 1400 nm.
Figure S7. (a) The $\text{Bi}_2\text{O}_2\text{Se}/\text{MoO}_3$ thin films heterojunction device structure simulate diagram of SILVACO TCAD software. (b) The holes density diagram of $\text{Bi}_2\text{O}_2\text{Se}/\text{MoO}_3$ thin films heterojunction device by SILVACO TCAD software simulate @ 808 nm irradiation with different power intensity.

Figure S8. The holes distribution density diagram of $\text{Bi}_2\text{O}_2\text{Se}/\text{MoO}_3$ thin films heterojunction device by SILVACO TCAD software simulate under 808 nm irradiation with different power intensity (a) P1, (b) P3, (c) P2 and (d) P4. Among P4 > P3 > P2 > P1.
Figure S8. The holes distribution density diagram of Bi$_2$O$_2$Se/MoO$_3$ thin films heterojunction device by SILVACO TCAD software simulate under $V_{ds} > 0$ V with different waveband light irradiation (a) 520 nm, (b) 808 nm, (c) 980 nm and (d) 1550 nm. (e), (f) Current and holes distribution density curves of Bi$_2$O$_2$Se/MoO$_3$ thin films heterojunction device.

Figure S10. The band contact diagram of Bi$_2$O$_2$Se and MoO$_3$ materials under (a) $V_{ds} < 0$ V, (b) $V_{ds} = 0$ V and (c) $V_{ds} > 0$ V according to the band characteristics.
Figure S11. I_{ph} of Bi$_2$O$_2$Se/MoO$_3$ device @ 808 nm under different power densities.

Figure S12. R_i and current curves of Bi$_2$O$_2$Se/MoO$_3$ device at different laser power intensity.
Figure S13. τ_{on} and τ_{off} of the Bi$_2$O$_3$Se/MoO$_3$ heterojunction photodetector (a) @ 650 nm and (b) @ 980 nm. The τ_{on} and τ_{off} of device @ 650 nm and @ 980 nm were less than 180 and 180 µs, 300 and 500 µs, respectively.

Figure S14. The noise diagram of pure Bi$_2$O$_3$Se thin film device and Bi$_2$O$_3$Se/MoO$_3$ thin film heterojunction device.
Figure S15. The relationship between the R_i and D^* of the Bi$_2$O$_2$Se/MoO$_3$ thin film heterojunction device and the laser power density changes.