Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supplementary information

Lead-free double perovskites: how divalent cations tune the electronic structure for photovoltaic applications

Ismail A. M. Ibrahim^{a,b} and Chan-Yeup Chung^a

^aDivision of Carbon Neutrality & Materials Digitalization, Korea Institute of Ceramic Engineering & Technology, Jinju 52851, South Korea.

^bDepartment of Chemistry, Faculty of Science, Helwan University, 11795 Cairo, Egypt. E-mail:

ibrahim@kicet.re.kr, ismail.ibrahim@science.helwan.edu.eg (Ismail Ibrahim) chanyeup@kicet.re.kr (Chan-Yeup Chung)

Figure S1: (a) Conventional cell and (b) Total energy–Volume curve of pristine $Cs_2AgSbCl_6$ double perovskite. The red ball represents the equilibrium volume by the third-order Birch-Murnaghan equation of states.

Figure S2: Octahedral symmetry in (a) the pristine, and (b) $Sn^{2+}-Sn^{2+}$, (c) $Sn^{2+}-V_{Ag}$, and (d) $Sn^{4+}-V_{Ag}$ doped perovskites.

Figure S3: (a) Band structure and (b) partial band structure of pristine $Cs_2AgSbCl_6$ primitive cell.

Figure S4: Band structure (left) and density of states (right) of (a) $Ge^{2+}-Ge^{2+}$, (b) $Sn^{2+}-V_{Ag}$, and (c) $Ge^{2+}-V_{Ag}$ doped perovskites.

Figure S5: Partial band structure of (a) $Ge^{2+}-Ge^{2+}$, (b) $Cd^{2+}-Cd^{2+}$, (c) $Sn^{2+}-V_{Ag}$, (d) $Ge^{2+}-V_{Ag}$, and (e) $Ge^{4+}-V_{Ag}$ doped perovskites. (f) The suggested Brillouin zone path of the pristine primitive cell (up) and doped perovskites (down).

Figure S6: Band structure (left) and density of states (right) of (a) $Cd^{2+}-Cd^{2+}$ and (b) $Ge^{4+}-V_{Ag}$ doped perovskites.

Donovalvita	Bader charge (e)				
rerovskile	Cs	Ag	Sb	Cl	Μ
Pristine	0.888	0.610	1.767	-0.692	
$Sn^{2+}-Sn^{2+}$	0.906	0.673	1.752	-0.718	1.358
$Ge^{2+}-Ge^{2+}$	0.897	0.636	1.718	-0.691	1.174
$Zn^{2+}-Zn^{2+}$	0.901	0.608	1.836	-0.701	1.146
$Cd^{2+}-Cd^{2+}$	0.901	0.635	1.805	-0.699	1.127
$\mathrm{Sn}^{2+}\!\!-\!\!\mathrm{V}_{\mathrm{Ag}}$	0.905	0.650	1.759	-0.704	1.305
$Ge^{2+}-V_{Ag}$	0.905	0.640	1.719	-0.692	1.221
$\mathrm{Sn}^{4+}\!\!-\!\!\mathrm{V}_{\mathrm{Ag}}$	0.899	0.597	1.733	-0.670	1.909
$\mathrm{Ge}^{4+}\!\!-\!\!\mathrm{V}_{\mathrm{Ag}}$	0.899	0.567	1.760	-0.659	1.658

Table S1: Average Bader charge (e) per atom in the pristine and all of the doped perovskites.Negative charges indicate gain of electrons and positive charges indicate loss of electrons.

Table S2: The calculated effective mass $(|m^*|)$ of electrons and holes (in a unit of bare electron mass m_e) along the Γ -M path for the proposed Sn²⁺ and Ge²⁺-based perovskites.

Porovelvito	$ m^* $			
I CI UVSKILC	electron	hole		
$Sn^{2+}-Sn^{2+}$	0.257	0.365		
$Ge^{2+}-Ge^{2+}$	0.252	0.361		
$\mathrm{Sn}^{2+}\!\!-\!\!\mathrm{V}_{\mathrm{Ag}}$	0.719	0.326		
$Ge^{2+}-V_{Ag}$	1.184	0.403		