Supporting information for

Dithia[9]helicenes: Molecular Design, Surface Imaging, and Circularly Polarized Luminescence with Enhanced Dissymmetry Factors

Bianca C. Baciu, ${ }^{\text {a }}$ Pawel J. Bronk, ${ }^{\text {a }}$ Tamara de Ara, ${ }^{\text {b }}$ Rafael Rodriguez, ${ }^{\text {c }}$ Pierpaolo Morgante, ${ }^{\text {e }}$ Nicolas Vanthuyne, ${ }^{\text {d }}$ Carlos Sabater, ${ }^{\text {b }}$ Carlos Untiedt, ${ }^{\text {b }}$ Jochen Autschbach ${ }^{*, e}$ Jeanne Crassous, ${ }^{*, c}$ Albert Guijarro.,,a
${ }^{a}$ Departamento de Química Orgánica and Instituto Universitario de Síntesis Orgánica, Unidad asociada CSIC, Universidad de Alicante, Campus de San Vicente del Raspeig, E-03080, Alicante, Spain
${ }^{b}$ Departamento de Física Aplicada and Unidad asociada CSIC, Universidad de Alicante, Campus de San Vicente del Raspeig, E-03080, Alicante, Spain
${ }^{c}$ Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
${ }^{d}$ Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
${ }^{e}$ Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States

Table of Contents

Section S1: Experimental part 3

1. Synthesis of exo-dithia[9]helicene and endo-dithia[9]helicene 3
2. General Methods 4
3. Photochemistry 5
4. Synthesis and characterization of compounds 5
4.1. 5-Ethynylbenzo[b]thiophene (3)5
4.2. (E)-2-(2-(Benzo[b]thiophen-5-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxoborolane (5) 6
4.3. 3,6-Bis((E)-2-(benzo[b]thiophen-5-yl)vinyl)phenanthrene (8) 7
4.4. Exo-dithia[9]helicene (1) 7
5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 9
5.1. 5-Ethynylbenzo[b]tiophene ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 9
5.2. 6-Ethynylbenzo[b]tiophene $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 10
5.3. (E)-2-(2-(Benzo[b]tiophene-5-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxoborolane (300MHz, CDCl3) 11
5.4. (E)-2-(2-(Benzo[b]tiophene-6-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxoborolane (300MHz, CDCl_{3}) 12
5.5. 3,6-Bis((E)-2-(benzo[b]tiophen-5-yl)vinyl)phenanthrene (400MHz, CDCl_{3}) 13
5.6. 3,6-Bis((E)-2-(benzo[b]tiophen-6-yl)vinyl)phenanthrene (300MHz, CDCl_{3}) 13
5.7. Exo-dithia[9]helicene $\left(400 \mathrm{MHz}\right.$, Methylene chloride- d_{2}) 14
5.8. Endo-dithia[9]helicene ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 15
6. HMRS (ESI) 16
7. X-ray diffraction (XRD) analysis 17
8. List of possible isomeric structures in the synthesis of exo-1 and endo-2 21
9. HPLC separations 21
10. Photophysical and chiroptical studies 28
10.1. CD and CPL measurements 28
11. Scanning Tunneling Microscopy (STM) 29
Section S2: Theoretical part 30
12. Computational details. 30
13. Optimized structures in Cartesian coordinates (xyz format). 51
14. Additional structures optimized with $\omega B 97 X-D / d e f 2-S V(P)$. 62
Section S3: Additional references. 65

Section S1: Experimental part

1. Synthesis of exo-dithia[9]helicene and endo-dithia[9]helicene

2. General Methods

Commercially starting materials and solvents for photochemistry, chromatography and recrystallization were used without further purification, unless otherwise stated. THF, benzene and cyclohexane were dried and distilled over Na / K alloy right before. Commercially unavailable reagents were synthesized via different methods that will be explained separately.

Gas chromatography analyses (GLC) were carried out with a Hewlett Packard HP-5890 instrument equipped with a flame ionization detector and a $30 \mathrm{~m} \mathrm{HP}-5$ capillary column (0.32 mm diam, $0.25 \mu \mathrm{~m}$ film thickness), using nitrogen as carrier gas (12 psi). Column chromatography was performed with Merck silica gel 60 ($0.040-0.063 \mu \mathrm{~m}, 240-400$ mesh). Thinlayer chromatography (TLC) was performed on precoated silica gel plates (Merck 60, F254, 0.25 $\mathrm{mm})$. TLC detection was done by UV_{254} light, R_{f} values are given under these conditions. NMR spectra were recorded on a Bruker Avance 300 and Bruker Avance 400 (300 and 400 MHz for ${ }^{1} \mathrm{H}$-NMR, and 75 and 100 MHz for ${ }^{13} \mathrm{C}$-NMR respectively) using CDCl_{3} as a solvent and TMS as internal standard. Chemical shifts (δ) are given in ppm vs. TMS. Infrared (IR) analysis was performed with a JASCO FT/IR 4100 spectrophotometer equipped with an ATR component. LRMS were performed using the electron impact (EI) mode at 70 eV in an AGILENT 5973N mass spectrometer coupled with an AGILENT 6890N gas chromatographer. Melting points were performed with a Reichert Thermovar polarizing light microscope and melting points apparatus and have been corrected. Differential scanning calorimetry (DSC) analyses were performed with a calorimeter of TA INSTRUMENTS model Q100 mDSC.

Absorption spectra of UV-Visible (UV-vis, in $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$) were recorded on a UV-2401PC Shimadzu spectrophotometer. Fluorescence spectra were recorded on a FL 920 Edinburgh fluorimeter. Fluorescence quantum yields \emptyset were measured in diluted solutions using the following equation:

$$
\emptyset_{X}=\emptyset_{S T}\left(\frac{\operatorname{Grad}_{X}}{\operatorname{Grad}_{S T}}\right)\left(\frac{\eta_{X}^{2}}{\eta_{S T}^{2}}\right)
$$

The parameters that appear in the equation mean: the subscripts ST and X denote standard and sample respectively, \emptyset is the fluorescence quantum yield, Grad is the gradient from the plot of integrated fluorescence intensity vs absorbance, and η the refractive index of the solvent. Quantum yield measurements were carried out using quinine in sulfuric acid as reference (excitation of reference and sample compounds was performed at the same wavelength). Spectra were recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature and in 1-methyl-THF (Me-THF) at 77 K . Optical Rotations were measured on a Jasco P-200.

Electronic circular dichroism ($E C D$, in $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$) was measured on a Jasco J-815 Circular dichroism Spectrometer (IFR140 facility- Biosit- Université de Rennes 1). The circularly polarized luminescence (CPL) measurements were performed using a home-built CPL spectrofluoropolarimeter (constructed with the help of the JASCO Company). The samples were excited using a 90° geometry with a Xenon ozone-free lamp 150 W LS. The concentration of the sample was $\mathrm{ca} .10^{-5} \mathrm{M}$. Spectra were recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with 10 accumulations.

3. Photochemistry

Two different photochemical setups (400 W high-pressure Hg lamps and $2 \times 50 \mathrm{~W}, 365 \mathrm{~nm}$ LED board) were used for the final Mallory-Katz photocyclizations reaction.

A 400-watt high-pressure mercury lamp (Osram HQL MBF-U) was modified by cutting away the outer glass envelope from the screw base (preserving the inner quartz arc tube containing Hg) and was mounted in a porcelain lamp holder provided with a reflector. The lamp was connected to a corresponding power unit and the light beam was focused horizontally to a number of 100 mL Schlenck's tubes provided with magnetic stirring and a vertical condenser ending up with a bubbler and refrigerated with a recirculating chiller. 30\% ethylene glycol -water mixture as a coolant. The chemical hood was lined with aluminum foil to avoid unwanted exposure to UV radiation. We used cyclohexane or benzene under reflux as solvents. For the degassed reaction, Ar was mildly bubbled through the reaction mixture using a 2 mm flexible Teflon tube.

Two 50 W LED boards were fixed to the walls of a vertical aluminum cylinder (15 cm diameter \times 25 cm height) facing each other on opposite sides and connected to the corresponding power units. Small heat dissipaters provided with fans were attached to the LED boards to prevent overheating. This constituted the irradiation chamber. A 250 mL Schlenk 0.6 mm thick singlewalled borosilicate tube was placed in the middle of this chamber containing the reaction mixture and was irradiated from opposite sides, at ca. 4 cm distance from each LED plate, while being magnetically stirred from the bottom. With this setup, we worked without reflux and no additional refrigeration of the central reaction tube was needed. We use cyclohexane or benzene as solvents. For the degassed reaction, Ar was mildly bubbled through the reaction as explained above.

4. Synthesis and characterization of compounds

4.1. 5-Ethynylbenzo[b]thiophene (3) ${ }^{1}$

This compound was prepared by adapting a Sonogashira coupling described in the literature to our substrates ${ }^{1}$. A pressure tube was charged with a stirbar, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($145.80 \mathrm{mg} ; 0.2 \mathrm{mmol} ; 0.1 \mathrm{eq}$.), Cul ($39.71 \mathrm{mg} ; 0.2$ mmol; 0.1 eq.) and 5 -bromobenzo[b]tiophene ($426.18 \mathrm{mg} ; 2 \mathrm{mmol}$; 1eq.). The tube was sealed with septum and three cycles vacuum/argon were then performed. Then 4.4 mL of dry THF and 2.2 mL of dry piperidine followed by trimethylsilylacetylene $0.56 \mathrm{~mL}, 4$ mmol; 2 eq.) were added via syringe. The tube was closed and heated in an oil bath at $110^{\circ} \mathrm{C}$ overnight. The reaction was monitored by TLC. After completion, the dark solution was filtered through a pad of celite. The crude product was purified by column chromatography (silica gel, hexane). The combined fractions were evaporated, and the yellow solid was immediately dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and treated with solid $\mathrm{K}_{2} \mathrm{CO}_{3}(418 \mathrm{mg} ; 3 \mathrm{mmol})$ with vigorous stirring for 3 hours. The work up consisted in an extraction using 5 mL of $\mathrm{H}_{2} \mathrm{O}$ and $3 \times 10 \mathrm{~mL}$ of EtOAc. The organic phase was then dried over magnesium sulfate, filtered and the solvent evaporated under reduced pressure (15 Torr). The residue was purified by column chromatography on silica gel (hexane) to obtain a yellow oil in 88% yield.

Yellow oil; $R_{\mathrm{f}}=0.44$ (hexane); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: $\delta=7.99$ (d, J=1.1 Hz, 1H), $7.83(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=140.26$, $139.55,127.71,127.70,127.61,123.75,122.57,118.08,84.08,76.82 . \mathrm{MS}(E I) \mathrm{m} / \mathrm{z} 160.05\left(\mathrm{M}^{+}+2\right.$, $4.7), 159.10\left(\mathrm{M}^{+}+1,11.6\right), 158.10\left(\mathrm{M}^{+}, 100\right), 114.10(14.5), 113.10(6.2), 79.10$ (3.9). IR (neat) $\mathrm{v}_{\max }$ 3292.86, 1432.85, 1314.25, 1156.12, 1116.58, 895.77, 824.42, 808.99, 753.10, 732.82, $696.18 \mathrm{~cm}^{-1}$.

6-Ethynylbenzo[b]thiophene (4) ${ }^{2}$

This compound was prepared following the previous procedure, but in this case replacing 5-bromobenzo[b]thiophene by 6-bromobenzo[b]thiophene. Yellow oil in 75% yield; $R_{\mathrm{f}}=0.48$ (hexane); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=8.05(\mathrm{~s}, 1 \mathrm{H}), 7.77$ (d, $J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=5.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ (s, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=139.80,139.62,128.28,128.02,126.57,123.91,123.52$, 117.99, 84.02, 77.35. MS (EI) $m / z 160.10\left(\mathrm{M}^{+}+2,5.1\right), 159.10\left(\mathrm{M}^{+}+1,12.0\right), 158.10\left(\mathrm{M}^{+}, 100\right)$, 114.10 (13.5), 113.10 (6.3), 79.10 (3.8). IR (neat) $v_{\max } 3297.68,1455.03,1385.6,1214.93$, $1080.91,1046.19,907.34,823.45,753.20,732.78,697.14 .663 .39 \mathrm{~cm}^{-1}$.

4.2. (E)-2-(2-(Benzo[b]thiophen-5-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxoborolane

 (5) ${ }^{3}$

The compound was prepared by adapting to our substrates a procedure of hydroboration of alkynes ${ }^{4}$. In an oven-dried Schlenk tube, $\mathrm{CuCl}(8.17 \mathrm{mg} ; 0.082 \mathrm{mmol} ; 0.03 \mathrm{eq}$) $)$, $\mathrm{NaOt}-\mathrm{Bu}$ (15.86 mg ; $0.164 \mathrm{mmol} ; 0.06$ eq.) and Xantphos ligand ($47.33 \mathrm{mg} ; 0.082$ mmol; 0.03 eq.) were added. After three cycles of vacuum/argon, 2.5 mL of dry THF were injected and the solution was stirred for 30 minutes at room temperature. Then bis(pinacolato)diboron ($1.39 \mathrm{~g} ; 5.46 \mathrm{mmol} ; 2 \mathrm{eq}$.) in 1.6 mL of dry THF were added, the reaction mixture being stirred for 10 minutes more at room temperature. 5Ethynylbenzo[b]tiophene ($431.34 \mathrm{mg} ; 2.73 \mathrm{mmol} ; 1$ eq.) was then added followed by dry MeOH $(218.40 \mu \mathrm{~L}, 5.4 \mathrm{mmol})$. The reaction mixture was stirred at room temperature until no starting material was detected by TLC (4 hours). After this time, the reaction mixture was filtered through a pad of celite and the residue was purified by column chromatography on silica gel (hexaneEtOAc 9:1) obtaining a white solid in 68% yield.

White solid; $R_{\mathrm{f}}=0.51$ (hexane-EtOAc 9:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.88(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=5.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (d, J=18.4 Hz, 1H), 1.33 (s, 12H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=149.77,140.37,140.05,134.14$, 127.09, 124.27, 122.94, 122.84, 122.64, 83.48, 24.96. MS (EI) $m / z 288.15$ (${ }^{+}+2,6.3$), 287.15 $\left(\mathrm{M}^{+}+1,19.3\right), 286.10\left(\mathrm{M}^{+}, 100\right), 285.15\left(\mathrm{M}^{+}-1,24.7\right), 228.10(7.4), 201.10(21.8), 186.00(95)$, 170.00 (74.5), 160.00 (14.9), 134.00 (14.7), 115.05 (13.1), 89.05 (5.2), 57.10 (3.9). IR (neat) $v_{\max }$ 2977.55, 2937.41, 1693.19, 1619.91, 1430.92, 1353.78, 1322.93, 1214.93, 1137.80, 1049.09, $998.95,971.95,898.67,844.67,798.39,759.82,698.11,659.54 \mathrm{~cm}^{-1}$.

(E)-2-(2-(Benzo[b]thiophen-6-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxoborolane (6) ${ }^{5}$

This compound was prepared employing the previous procedure, replacing the terminal alkyne by 6-
ethynylbenzo[b]thiophene.
Yellow oil in 83% yield; $R_{f}=0.44$ (hexane-EtOAc 9:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.94$ (d, $J=0.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, \mathrm{~J}=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$: $\delta=149.51,140.27,140.21,134.07,127.66,123.87,123.71,123.06,121.80,83.48,24.94 . \mathrm{MS}$ (EI) $\mathrm{m} / \mathrm{z} 288.10\left(\mathrm{M}^{+}+2,6.7\right), 287.10\left(\mathrm{M}^{+}+1,19.3\right), 286.10\left(\mathrm{M}^{+}, 100\right), 285.15\left(\mathrm{M}^{+}-1,24.2\right), 271.10$ (12.6), 228.10 (5.9), 201.10 (20.9), 186.00 (82.9), 170.00 (69.3), 161.00 (15.4), 134.00 (12.5),
115.05 (11.1), 89.05 (4.6), 57.10 (3.4). IR (neat) $v_{\max } 2977.55,2927.41,1689.34,1619.91$, $1457.92,1346.07,1265.07,1207.22,1141.65,1041.37,998.95,894.81,844.67,813.81,736.67$, $694.25 \mathrm{~cm}^{-1}$.

4.3. 3,6-Bis((E)-2-(benzo[b]thiophen-5-yl)vinyl)phenanthrene (8)

This compound was prepared by adapting to our substrates a Suzuki coupling described in the literature ${ }^{6}$. In an over-dried pressure tube $\mathrm{PdCl}_{2}(19.30 \mathrm{mg} ; 0.11$ mmol; 0.20 eq.), $\mathrm{PPh}_{3}(62.50 \mathrm{mg} ; 0.21 \mathrm{mmol} ; 0.40 \mathrm{eq}$.$) ,$ $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.03 g; $\left.3.42 \mathrm{mmol} ; 6 \mathrm{eq}.\right)$, (E)-2-(2-(benzo[b]tiophen-5-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2dioxoborolane ($524.40 \mathrm{mg} ; 1.71 \mathrm{mmol} ; 3$ eq.) and 3,6dibromophenanthrene ($176.40 \mathrm{mg} ; 0.57 \mathrm{mmol} ; 1 \mathrm{eq}$. were added. The tube was sealed with a septum and after three cycles of vacuum/argon, 3.6 mL of THF and 0.4 mL of $\mathrm{H}_{2} \mathrm{O}$ were added with a syringe. Then the tube was closed and heated in an oil bath at $85^{\circ} \mathrm{C}$ for 20 hours. An insoluble solid in suspension was observed in the tube. The insoluble solid, a greenish yellow solid, was filtered and washed with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL each).

Greenish solid in 90\% yield; $R_{\mathrm{f}}=0.48$ (hexane-EtOAc 9:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.80$ (s, $2 \mathrm{H}), 8.03(\mathrm{~s}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{~s}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.53-7.44 (m, 6H), 7.39 ($d, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}\left(E I\right.$, DIP) $m / z 496.2\left(\mathrm{M}^{+}+2,14.33\right), 495.2\left(\mathrm{M}^{+}+1\right.$, 32.40), $494.2(\mathrm{M}+100), 358.2$ (11.33), 247.1 (16.42). IR (neat) $v_{\max } 3054.69,1511.92,1434.78$, 1326.79, 1261.22, 1045.23, 960.37, 887.09, 840.81, 806.09, 752.10, 694.24.

3,6-Bis((E)-2-(benzo[b]thiophen-6-yl)vinyl)phenanthrene (9)

This compound was prepared following the previous procedure, but as starting reagents (E)-2-(2-(benzo[b]tiophen-6-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2dioxoborolane and 3,6-dibromophenanthrene were used.

Greenish solid in 95% yield; $R_{\mathrm{f}}=0.44$ (hexane-EtOAc 9:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=8.81(\mathrm{~s}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 2 \mathrm{H})$, $7.89(\mathrm{~s}, 4 \mathrm{H}), 7.86$ (d, J=8.3 Hz, 2H), 7.72 (s, 2H), 7.69 (dd. $J=8.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}$ (EI, DIP) m/z 496.2 ($\mathrm{M}^{+}+2,16.33$), $495.2\left(\mathrm{M}^{+}+1,38.06\right), 494.2\left(\mathrm{M}^{+}, 100\right), 358.2$ (11.64), 247.1 (16.07). IR (neat) $\mathrm{v}_{\max } 3062.41$, 3023.84, 1600.63, 1392.35, 1083.80, 1041.37, 956.52, 879.38, 836.95, 752.10, 694.25.

4.4. Exo-dithia[9]helicene (1)

The synthesis of this compound has been carried out by three photochemical methods (A, B and C) in line what was explained above (photochemistry). Method A) in three oven-dried Schlenk tubes were loaded with 3,6-bis((E)-2-(benzo[b]thiophen-5-yl)vinyl)phenanthrene (49.42 mg ; $0.1 \mathrm{mmol} ; 1 \mathrm{eq}$.), KI ($33.2 \mathrm{mg} ; 0.2 \mathrm{mmol} ; 2 \mathrm{eq}$.$) and 200 \mathrm{~mL}$ of benzene each. The tubes were provided with vertical condensers connected in line to a chiller. The recirculation chiller was turned on and the mixture was irradiated with a 400 W high-pressure Hg lamp for 3-4 hours under continuous reflux. Methos B) in a different procedure under inert atmosphere a suspension of 3,6-bis((E)-2-(benzo[b]thiophen-5-
yl)vinyl)phenanthrene (24.71 mg ; $0.05 \mathrm{mmol} ; 1$ eq.), iodine ($38.07 \mathrm{mg} ; 0.15 \mathrm{mmol} ; 3 \mathrm{eq}$.), 1,2epoxybutane (360.5 mg ; $5 \mathrm{mmol} ; 100 \mathrm{eq}$.) and 100 mL of benzene were placed in an oven-dried Schlenk tubes. As in the former method, the recirculation chiller was turned on and the mixture was irradiated with 400 W high-pressure Hg lamp for 3-4 hours in refluxing benzene under Ar. Method C) LED technology. In here we used the same amount of reagents a in B to compare reaction time and yields. The Schlenk tubes were safely irradiated with our LED setup overnight (12 h) at room temperature. In all cases, (A, B and C) the advance of the reaction was followed by TLC. After the reaction was completed, it was washed with aqueous NaHSO_{3}, dried over magnesium sulfate, filtered and the solvent evaporated under reduced pressure (15 Torr). The residue was purified by column chromatography on silica gel (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2} 8: 2$) to obtain a greenish yellow solid. The isolated yields are: Methos A) 3-4 h, 52\%. Methos B) 3-4 h, 49\%. Method C) 12 h, 60\%.

Greenish yellow crystals; approximated melting point $365.3^{\circ} \mathrm{C}$ (DSC, with decomposition); $R_{\mathrm{f}}=$ 0.39 (hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2} / 8: 2$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (Methylene chloride- $\mathrm{d}_{2}, 400 \mathrm{MHz}$): $\delta=8.09$ (s, 2H), 7.98 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.67 (d, J=8.2 Hz, 2H), 7.44 (dd, J=8.5 $0.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (d, J=8.4 Hz, 2H), 7.23 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{dd}, J=5.50 .4 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{dd}, J=5.50 .8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR (Methylene Chloride- $\mathrm{d}_{2}, 101 \mathrm{MHz}$): $\delta=138.23,134.04,132.82,131.86,129.93,127.81$, 127.14, 127.08, 127.02, 126.93, 126.17, 125.91, 124.96, 124.70, 122.98, 122.69, 120.56. MS (EI, DIP) $m / z 492.1\left(\mathrm{M}^{+}+2,14.80\right), 491.1\left(\mathrm{M}^{+}+1,37.81\right), 490.1\left(\mathrm{M}^{+}, 100\right), 456.1$ (12.38), 278.1 (13.31), 245.0 (10.78), 228.1 (17.32). HRMS (ESI): M^{+}found $490.0834\left[\mathrm{C}_{34} \mathrm{H}_{18} \mathrm{~S}_{2}\right]^{+}$, requires 490.0850 . IR (neat) $v_{\max } 3035.41,1465.63,1346.07,1315.21,1191.79,1157.08,1130.08,1091.51,1014.37$, $948.81,883.24,836.95,744.39,694.25 \mathrm{~cm}^{-1}$.

Endo-dithia[9]helicene (2)

In this case a suspension of 3,6-bis((E)-2-(benzo[b]tiophen-6yl)vinyl)phenanthrene, iodine and 1,2-epoxybutane in benzene under Ar , was irradiated following the same methodology described above for the exo isomer. The isolated yields are: Method B) 38%. Method C) 48%. The reaction affords only a mixture of unidentifiable products in the presence of air.

Greenish yellow crystals; approximated $332.3^{\circ} \mathrm{C}$ melting point (DSC, with decomposition); $R_{\mathrm{f}}=$ 0.40 (Hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 8: 2$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=8.16(\mathrm{~s}, 2 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.70$ (d, J=8.2 Hz, 2H), $7.40(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.88$ (d, J=5.4 $\mathrm{Hz}, 2 \mathrm{H}), 6.72$ (d, J=5.4 Hz, 2H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=137.80,134.96,132.63,132.38$, 129.17, 127.42, 127.31, 127.07, 126.59, 126.06, 125.43, 124.74, 124.58, 124.12, 123.69, 122.12, 121.23. MS (EI, DIP) $m / z 492.2$ ($\left.\mathrm{M}^{+}+2,15.66\right), 491.2\left(\mathrm{M}^{+}+1,39.86\right), 490.2\left(\mathrm{M}^{+}, 100\right), 443.2(25.25)$, 228.1 (15.25). HRMS (ESI): M^{+}found $490.0840\left[\mathrm{C}_{34} \mathrm{H}_{18} \mathrm{~S}_{2}\right]^{+}$, requires 490.0850. IR (neat) $\mathrm{v}_{\max }$ $3039.26,1488.78,1353.78,1292.07,1249.65,1133.94,1079.94,948.81,894.81,833.10,736.67$, $701.96 \mathrm{~cm}^{-1}$.

5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds

5.1. 5-Ethynylbenzo[b]tiophene ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5-Ethynylbenzo[b]tiophene ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5.2. 6-Ethynylbenzo[b]tiophene (300MHz, CDCl_{3})

6-Ethynylbenzo[b]tiophene ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5.3. (E)-2-(2-(Benzo[b]tiophene-5-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxoborolane $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(E)-2-(2-(Benzo[b]tiophene-5-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxoborolane ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5.4. (E)-2-(2-(Benzo[b]tiophene-6-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxoborolane (300MHz, CDCl ${ }_{3}$)

(E)-2-(2-(Benzo[b]tiophene-6-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxoborolane ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5.5. 3,6-Bis((E)-2-(benzo[b]tiophen-5-yl)vinyl)phenanthrene (400MHz, $\left.\mathrm{CDCl}_{3}\right)$

5.6. 3,6-Bis((E)-2-(benzo[b]tiophen-6-yl)vinyl)phenanthrene ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5.7. Exo-dithia[9]helicene (400MHz, Methylene chloride-d ${ }_{2}$)

Exo-dithia[9]helicene (101 MHz , Methylene chloride- d_{2})

5.8. Endo-dithia[9]helicene $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Endo-dithia[9]helicene ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6. HMRS (ESI)

Exo-dithia[9]dithiahelicene

Tgt Formula	Tgt Mass	Obs. Mass	Tgt Score	Mass error (ppm)	Obs. m / z	Find Cpds Alaorith
C34 H18 S2	490.085	490.084	94.03	-2.12	490.0334	Find Formula

Target Compound Screening Report

MS Spectrum	Peak Llist	Abund	Formula	Ion/Is	
490.0834		1564705	C34H1852	M+	
490.0834	1	15667.05		M+	
491.0864	1	53191.29	C34H1852	M+	
492.0845	1	18245.49	C34H1852	M+	
493.0851	1	4272.97	C34H1852	M+	
494.0849	1	905.35	C34H1852	M+	
495.084	1	174.7	C34H1852	M+	
490.0834	1	156467.05	C34H1852	M+	2.17
491.0864	1	53191.29	C34H1852	M+	2.45
492.0845	1	18245.49	C3411852	M+	1.05
493.0851	1	4272.97	C34H1852	M+	1.21
494.0849	1	905.35	C3441852	M+	0.48
495.084	1	174.7	C34H1852	M+	2.32

Endo- dithia[9]helicene

Tgt Formula	Tgt Mass	Obs. Mass	Tgt Score	Mass error(ppm)	Obs. m/z	Find Cpds Aloorith
C34 H18 S2	490.085	490.0946	98.21	-0.77	490.084	Find By Formula

Target Compound Screening Report

MS Spectrum Peak list					
Obs. m/2	Charge	Abund	Formula	Ion/Isotope	Tgt Mass Error (ppm)
490.084	1	3339.65	C34H1852	M+	
491.0872	1	1190.11	C34H1852	M+	
492.085	1	446.68	C34H1852	M+	
493.0857	1	124.15	C34H1852	${ }^{+}+$	
494.0846	1	32.72	C34H1852	M+	
490.084	1	3339.65	C34H1852	M+	0.84
491.0872	1	1190.11	C34H1852	${ }^{\text {M }}$	0.92
492.085	1	446.68	C34H1852	M+	0
493.0857	1	124.15	C34H1852	${ }^{\text {M }}+$	0.06
499.0446	1	32.72	C34H1852	${ }^{1+}$	1.09

7. X-ray diffraction (XRD) analysis

The crystals of exo-dithia[9]helicene-1 and endo-dithia[9]helicene-2 were analyzed using a Bruker CCD-Apex single crystal X-Ray diffraction kit equipped with an X-ray tube with Mo anode and KRYOFLEX low temperature equipment.

Exo-dithia[9]helicene-1

Bond precision: $C-C=0.0176 \mathrm{~A}$
Wavelength=0.71073
Cell: $a=33.075(4) \quad b=9.8984(11) \quad c=28.178(3)$ alpha=90 beta=94.890(2) gamma=90
Temperature: 298 K

	Calculated	Reported
Volume	9191.6 (18)	9191.7 (17)
Space group	C 2/c	C 2/c
Hall group	-C 2 yc	
Moiety formula	$\mathrm{C}_{34} \mathrm{H}_{18} \mathrm{~S}_{2}$	$\mathrm{C}_{34} \mathrm{H}_{18} \mathrm{~S}_{2}$
Sum formula	$\mathrm{C}_{34} \mathrm{H}_{18} \mathrm{~S}_{2}$	$\mathrm{C}_{34} \mathrm{H}_{18} \mathrm{~S}_{2}$
Mr	490.60	490.60
Dx, $\mathrm{g} \mathrm{cm}^{-3}$	1.418	1.418
Z	16	16
$\mathrm{Mu}\left(\mathrm{mm}^{-1}\right)$	0.255	0.255
F 0000	4064.0	4064.0
F $000{ }^{\prime}$	4069.33	
h, k, l max	39, 11, 33	39, 11, 33
Nref	8147	8132
Tmin, Tmax	0.982, 0.995	0.932, 0.995
Tmin'	0.912	

Correction method= \# Reported T Limits: Tmin=0.932 Tmax=0.995
AbsCorr = MULTI-SCAN
Data completeness $=0.998$ Theta (max) $=25.050$
$R($ reflections $)=0.1173(3653)$ wR2(reflections) $=0.3000(8132)$
$S=1.021$ Npar= 649

Comments to the checkCIF/Platon Exo-dithia[9]helicene-1: deposition number 2184340. Associated files: x _finalfile001.cif and a380.fcf
a380
Level A
PLAT234 Large Hirshfeld Difference C5 --C6. 0.41 Å.
Response: The most probable cause in here is dynamic disorder along with a limited quality of the crystal. The structure was determined at room temperature, as a low temperature setup was not operative in our facilities. Analysis done considering higher symmetry groups or potential twinning did not afford better results, as neither did several attempts to recrystallize the compound under different conditions. Substitutional disorder or misassignment of atom positions are not the causes for this, nor has the structure been over-refined.

Level B. Response: The same arguments stated above apply in here.

Endo-dithia[9]helicene-2

Bond precision: $\mathrm{C}-\mathrm{C}=0.0140 \mathrm{~A}$
Wavelength=0.71073
Cell: $a=9.712(2) \quad b=9.709(3) \quad c=25.072(6)$
alpha=90 beta=94.401(7) gamma=90

Temperature: 293 K

	Calculated	Reported
Volume	2357.2 (10)	2357.2 (10)

Space group	P 21/n	P 21/n
Hall group	-P 2yn	
Moiety formula	$\mathrm{C}_{34} \mathrm{H}_{18} \mathrm{~S}_{2}$	$\mathrm{C}_{34} \mathrm{H}_{18} \mathrm{~S}_{2}$
Sum formula	$\mathrm{C}_{34} \mathrm{H}_{18} \mathrm{~S}_{2}$	$\mathrm{C}_{34} \mathrm{H}_{18} \mathrm{~S}_{2}$
Mr	490.60	490.60
Dx, g cm ${ }^{-3}$	1.382	1.382
Z	4	4
$\mathrm{Mu}\left(\mathrm{mm}^{-1}\right)$	0.249	0.249
F 0000	1016.0	1016.0
F 0000^{\prime}	1017.33	
$\mathrm{h}, \mathrm{k}, \mathrm{l}$ max	11, 11, 29	11, 11, 29
Nref	4203	4193
Tmin, Tmax	0.905, 0.995	0.526, 0.995
Tmin'	0.905	

Correction method= \# Reported T Limits: Tmin=0.526 Tmax=0.995 AbsCorr = MULTI-SCAN
Data completeness $=0.998$ Theta $(\max)=25.110$
$R($ reflections $)=0.1078(1054)$ wR2(reflections) $=0.1439(4193)$
$S=0.686$ Npar $=325$

Comments to the checkCIF/Platon Endo-dithia[9]helicene-2: deposition number 2184341.
Associated files: mon_final003.cif and a387.fcf
a387
RINTA01 The value of Rint is greater than 0.25
Response: The overall quality of the data may be somewhat low because the crystal diffracts only weakly in one of its dimensions. Unfortunately, attempts to obtain better quality crystals
by recrystallizing the compound under different conditions (T/solvent) did not afford better quality data. The structure was determined at room temperature, as a low temperature setup was not operative in our facilities.

PLAT020 The Value of Rint is Greater Than 0.12 \qquad 0.446 Report

Response: Similar arguments to those described before apply in here.
PLAT026 Ratio Observed / Unique Reflections (too) Low .. 25\% Check
Response: Again, a poor diffraction in one of the directions of the crystal may be responsible for this issue. Unfortunately, it could not be solved using different crystals obtained under different conditions of recrystallization, which afforded similar data.

Level B. Response: The same arguments stated above apply in here.

8. List of possible isomeric structures in the synthesis of exo-1 and endo-2

Potential isomers of the exo-series

Potential isomers in the endo-series

endo-2

Figure S1. The 10 possible isomers of the exo and endo series

9. HPLC separations

Analytical chiral HPLC separation for compound 1

- The sample is dissolved in dichloromethane, injected on the chiral column, and detected with a UV detector at 254 nm and a circular dichroism detector at 254 nm . The flow-rate is $1 \mathrm{~mL} / \mathrm{min}$.

Column	Mobile Phase	t1	k1	t2	k2	$\boldsymbol{\alpha}$	Rs
Chiralpak IF	Heptane / dichloromethane (70/30)	$5.37(+)$	0.82	$7.03(-)$	1.38	1.68	5.61

DAD1 E, Sig=254,4 Ref=off

RT [min]	Area	Area\%	Capacity Factor	Enantioselectivity	Resolution (USP)
5.37	4079	48.54	0.82		
7.03	4324	51.46	1.38		5.61
Sum	8402	100.00			

Preparative separation for compound 1:

- Sample preparation: About 40 mg of compound 1 were dissolved in 11 mL of dichloromethane.
- Chromatographic conditions: Chiralpak IF ($250 \times 4.6 \mathrm{~mm}$), hexane / dichloromethane (70/30) as mobile phase, flow-rate $=1 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm .
- Injections (stacked): 74 times $150 \mu \mathrm{~L}$, every 8.4 minutes.
- First fraction: 12 mg of the first eluted with ee > 99.5 \%

DAD1 E, Sig=254,4 Ref=off

- Second fraction: 14 mg of the second eluted with ee $>99.5 \%$

Analytical chiral HPLC separation for compound $\mathbf{2}$

- The sample is dissolved in dichloromethane, injected on the chiral column, and detected with a UV detector at 254 nm and a circular dichroism detector at 254 nm . The flow-rate is $1 \mathrm{~mL} / \mathrm{min}$.

Column	Mobile Phase	t1	k1	t2	k2	$\boldsymbol{\alpha}$	Rs
Chiralpak IF	Heptane / dichloromethane (70/30)	$5.34(+)$	0.81	$6.85(-)$	1.32	1.63	5.95

DAD1 E, Sig=254,4 Ref=off

RT [min]	Area	Area\%	Capacity Factor	Enantioselectivity	Resolution (USP)
5.34	1344	50.17	0.81		
6.85	1335	49.83	1.32	1.63	5.95
Sum	2678	100.00			

Preparative separation for compound 2:

- Sample preparation: About 16 mg of compound 2 were dissolved in 4 mL of a mixture of dichloromethane and hexane (50/50).
- Chromatographic conditions: Chiralpak IF ($250 \times 4.6 \mathrm{~mm}$), hexane / dichloromethane (70/30) as mobile phase, flow-rate $=1 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm .
- Injections (stacked): 20 times $200 \mu \mathrm{~L}$, every 8.4 minutes.
- First fraction: 2.5 mg of the first eluted with ee > 99.5 \%

- Second fraction: 3.3 mg of the second eluted with ee $>99.5 \%$

DAD1 E, $\mathrm{Sig}=254,4 \mathrm{Ref}=\mathrm{off}$

Analytical chiral HPLC separation for compound 10

- The sample is dissolved in dichloromethane, injected on the chiral column, and detected with a UV detector at 254 nm and a circular dichroism detector at 254 nm . The flow-rate is $1 \mathrm{~mL} / \mathrm{min}$.

Column	Mobile Phase	t1	k1	t2	k2	$\boldsymbol{\alpha}$	Rs
Chiralpak IE	Heptane / dichloromethane (70/30)	5.05	0.71	6	1.03	1.45	3.85

RT [min]	Area	Area\%	Capacity Factor	Enantioselectivity	Resolution (USP)
5.05	9627	50.00	0.71		
6.00	9627	50.00	1.03	1.45	3.85
Sum	19254	100.00			

- Sample preparation: About 90 mg of compound 10 were dissolved in 4.25 mL of dichloromethane.
- Chromatographic conditions: Chiralpak IE ($250 \times 10 \mathrm{~mm}$), hexane / dichloromethane (70/30) as mobile phase, flow-rate $=5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm .
- Injections (stacked): 85 times $50 \mu \mathrm{~L}$, every 6.7 minutes.
- First fraction: 40 mg of the first eluted with ee > 99.5%

DAD1 E, $\mathrm{Sig}=254,4$ Ref=off

- Second fraction: 40 mg of the second eluted with ee $>99.5 \%$

DAD1 E, Sig=254,4 Ref=off

Analytical chiral HPLC separation for compound 11

- The sample is dissolved in dichloromethane, injected on the chiral column, and detected with a UV detector at 254 nm and a circular dichroism detector at 254 nm . The flow-rate is $1 \mathrm{~mL} / \mathrm{min}$.

Column	Mobile Phase	t1	k1	t2	k2	$\boldsymbol{\alpha}$	Rs
Chiralpak IE	Heptane / dichloromethane (70/30)	$5.38(-)$	0.82	$6.57(+)$	1.23	1.49	4.79

DAD1 E, Sig=254,4 Ref=off

RT [min]	Area	Area\%	Capacity Factor	Enantioselectivity	Resolution (USP)
5.38	4446	49.95	0.82		
6.57	4455	50.05	1.23	1.49	4.79
Sum	8900	100.00			

Preparative separation for compound 11:

- Sample preparation: About 24 mg of compound Endo-S2-H7 were dissolved in 5.2 mL of dichloromethane.
- Chromatographic conditions: Chiralpak IE ($250 \times 10 \mathrm{~mm}$), hexane / dichloromethane (70/30) as mobile phase, flow-rate $=5 \mathrm{~mL} / \mathrm{min}$, UV detection at 254 nm .
- Injections (stacked): 35 times $150 \mu \mathrm{~L}$, every 7.5 minutes.
- First fraction: 5 mg of the first eluted with ee > 99.5%

- Second fraction: 5 mg of the second eluted with ee > 99.5%

10. Photophysical and chiroptical studies

10.1. CD and CPL measurements

Exo 1

Figure S2-1 Room and low temperature emission spectra of compounds $\mathbf{1 , 2}$ and 10,11 (MeTHF, C = $10^{-5} \mathrm{M}$).

Figure S2-2 Experimental UV-vis (bottom) and ECD (top) spectra (P) and (M)-10; inset: magnified view of the 400-450 nm region.

11. Scanning Tunneling Microscopy (STM)

For general information and description of the methods used in STM imaging, refer to reference 14 in the main text. Additional graphic material is shown below.

Supplemental graphic material by STM

Figure S3. STM image of both topologies (a) exo- and (b) endo- dithia[9]helicenes racemic in benzene solution (in a concentration of $0.25 \mathrm{mg} \cdot \mathrm{ml}^{-1}$) on (111)gold substrates deposited via drop casting. Set parameters are $\mathrm{V}_{\text {bias }}=0.5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{t}}=0.1 \times 10^{-9} \mathrm{~A}$ for both panels whereas for the inset image are $\mathrm{V}_{\text {bias }}=0.4 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{t}}=0.1 \times 10^{-9} \mathrm{~A}$. No order is observed in either panel. Inset of panel (a) shows a zoom in of single molecules on gold substrates.

Figure S4. Topographic images of pure enantiomers of endo-dithia[9]helicene. Panel (a) shows the FE (firs eluted $=(+)-P)$ and (b) the SE (second eluted $=(-)-M$) enantiomer. Set parameters for panel (a) are $\mathrm{V}_{\text {bias }}=-1.5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{t}}=0.1 \times 10^{-9} \mathrm{~A}$ and for (b), $\mathrm{V}_{\text {bias }}=0.9 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{t}}=0.1 \times 10^{-9} \mathrm{~A}$. Inset of panel (b) shows the molecular distribution along the herringbone of the gold structure. For the inset case, the set parameters are $\mathrm{V}_{\text {bias }}=1.3 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{t}}=0.03 \times 10^{-9} \mathrm{~A}$.

Section S2: Theoretical part

1. Computational details.

All calculations were performed with Kohn-Sham density functional theory (KS DFT) and KS time-dependent DFT (TD-DFT) linear response methods. Geometry optimizations and vibrational frequency calculations with the CAM-B3LYP functional ${ }^{7}$ and the def2-SV(P) Gaussiantype basis set ${ }^{8}$ were performed with Gaussian 16 , version A. 03 (G16). ${ }^{9} S_{1}$ equilibrium structures were optimized with excited state gradients from TD-DFT. Ground-state equilibrium structures were optimized with spin-restricted DFT. All structures were characterized as minima via harmonic vibrational frequency calculations. Calculations were performed with the (P) isomer of exo-dithia[9]helicene and endo-dithia[7]helicene, but the (M)-isomer was considered for comparison with the experimental data in the main text. Accordingly, the sign of the calculated chiroptical properties was inverted prior to reporting them in figures and tables.

Absorption and electronic circular dichroism (ECD) spectra were obtained considering the 30 lowest-lying excitations calculated using TD-DFT with the ground-state optimized geometries. The transitions were Gaussian broadened with a σ of 0.20 eV to obtain the corresponding spectra. Vibrationally resolved singlet emission and circularly polarized luminescence (CPL) spectra including Franck-Condon (FC) and Herzberg-Teller (HT) effects were calculated as implemented in G16. ${ }^{10}$ The vibronic transitions were Gaussian broadened with a σ of 0.0248 eV . Regarding general strategies for calculating natural optical activity parameters, in particular with DFT/TD-DFT, see, for example, References 11 and 12.

The CAM-B3LYP/def2-SV(P) level of theory yielded the correct signs for the ECD and CPL spectra except for the (M)-exo-dithia[7]helicene compound. Its ECD spectrum was investigated with a selection of functionals (M06-HF, ${ }^{13} \mathrm{M} 11,{ }^{14} \omega B 97 X-D,{ }^{15}$ and LC- ω HPBE ${ }^{16}$) and the def2-SV(P) basis set, confirming that CAM-B3LYP predicts the correct ECD sign (Figure S5, Panels A and B). We chose the functionals listed above based on their known excellent performance for excitation energies. ${ }^{17}$ The ω B97X-D functional was used to re-optimize the S_{0} and S_{1} structures to obtain the vibrationally resolved CPL spectrum reported in Figure S6. The S_{1} geometry obtained with this functional and basis set was then used as starting point in another geometry optimization with CAM-B3LYP. The optimized geometry obtained in this way was used to re-calculate the emission and CPL spectra, yielding the correct CPL sign as shown in Figure S7.

The dissymmetry factors ($g_{\text {lum }}$) reported in Table $S 7$ were calculated as $\Delta I / I$, i.e. as the ratio between the broadened calculated CPL (ΔI) and emission (I) intensities at the experimental wavelengths, instead of using the rotatory and dipole strengths of the electronic transitions. ${ }^{18}$ This way was chosen because for the two dithia[9]helicenes the purely electronic spectrum of these compounds, unlike the experimental CPL band, has a positive rotatory strength for the S_{0} - S_{1} transition, whose contribution can still be observed as a weak feature around the wavelength of the 0-0 transition in the vibrationally resolved calculated CPL spectrum for the exo isomer (Figure S11). To further investigate the origin of this negative band, calculations were performed for the FC and HT intensities separately from each other. The experimental spectra shown in Figure S16 were arbitrarily scaled to match the calculated intensities. ${ }^{18}$

It has been reported that HT effects heavily influence the shape and sign of ECD and CPL spectra for [6]helicene and its 2-methyl-, 5-aza-, and 2-bromo-derivatives through the modification of
the FC spectral features. ${ }^{18}$ As revealed by the present calculations, this is also the case for (M)-exo-dithia[7]helicene and the two dithia[9]helicenes. For the first compound, the FC spectrum already reproduces the shape and sign of the experimental equivalent well, although the relative intensity of the two experimental bands around 430 and 450 nm is not correctly reproduced. The experimental spectrum shows two bands of roughly the same intensity. The calculated FC spectrum, instead, shows two peaks of different intensity, with the first band being more intense than the second. HT effects alone are not enough to obtain a satisfactory agreement with the experiment. The combined FCHT spectrum appears less intense than the one including FC effects only due to FC and HT spectra having opposite signs. This reduces the intensity of both bands in the $430-450 \mathrm{~nm}$ range by roughly the same amount (panel A of Figure S16).

The CPL spectrum obtained including only FC contributions for the two [9]helicenes exhibits the wrong sign. For (M)-endo-dithia[9]helicene, the intensity of the FC spectrum is very weak in the whole spectral range, and the HT spectrum accounts for most of the spectral shape. The experimental spectrum is overall not well resolved, showing a major negative band whose intensity is largest around 460-470 nm. Individual bands are not clearly visible, instead. The computed HT and FCHT spectra exhibit the same pattern, with the most intense peak around 470 nm accompanied by two less intense shoulders. The FC spectrum of (M)-exodithia[9]helicene is opposite in sign to the HT spectrum, as for the (M)-endo-dithia[9]helicene compound. HT effects are responsible for the satisfactory agreement with the experimental data exhibited by the HT and FCHT spectra. The experimental spectrum shows three maxima, although not well resolved, that are matched by the calculated pattern. FC effects are responsible for the positive band observed between 450 and 460 nm , while the sign change is due to HT effects.

Overall, HT effects are responsible for sign changes, relative to the purely electronic spectra, for the calculated CPL of some of the systems. In addition, the simultaneous inclusion of FC and HT effects is necessary to obtain satisfactory agreement with the experimental data, similar to what was shown previously for hexahelicene and its derivatives in reference 18. As discussed in the main text, this is partially due to small rotatory strengths for the $S_{1}-S_{0}$ transition of these compounds, reported in Tables S1-S3 below.

Figure S5 Normalized absorption (Panel A) and ECD (Panel B) spectra calculated with the CAMB3LYP, LC- ω HPBE, M11, M06-HF, ω B97X-D functionals and the def2-SV(P) basis set on CAM-B3LYP/def2-SV(P) optimized geometries of (M)-exo-dithia[7]helicene. A Gaussian broadening with $\sigma=0.20 \mathrm{eV}$ was applied to the transitions. Calculated spectra are unshifted.

Figure S6 Normalized CPL spectrum for (M)-exo-dithia[7]helicene obtained with ω B97X-D/def2SV(P). A Gaussian broadening with $\sigma=0.0248 \mathrm{eV}$ was applied. A shift of -0.40 eV was applied to the computed spectrum.

Figure S7 Normalized absorption, ECD, vibrationally resolved singlet emission and CPL spectra alongside the optimized ground state structure of (M)-exo-dithia[7]helicene obtained with CAM-B3LYP/def2$S V(P)$. Calculated spectra were shifted by -0.40 eV (orange curves). Hydrogen atoms are white, carbon atoms are black, sulfur atoms are yellow.

Excitation number	Excitation energy ${ }^{\text {a }}$	Wavelength ${ }^{\text {b }}$	Oscillator strength ${ }^{\text {c }}$	Rotatory strength ${ }^{\text {d }}$	Occupied orbital	Virtual orbital	Percentage ${ }^{\text {e }}$
1	3.594	345	0.0012	$\begin{aligned} & \hline 3.61 \\ & (5.89) \end{aligned}$	100	103	34.6\%
					101	102	53.3\%
2	3.834	323	0.0065	$\begin{aligned} & -28.17 \\ & (-30.00) \end{aligned}$	100	102	56.7\%
					101	103	36.7\%
3	4.087	303	0.3564	-904.80 (-878.67)	100	102	31.7\%
					101	103	45.7\%
4	4.228	293	0.0046	$\begin{aligned} & -30.09 \\ & (-7.60) \end{aligned}$	98	102	34.8\%
					99	103	25.0\%
					101	105	17.2\%
5	4.293	289	0.1390	$\begin{gathered} 191.46 \\ (322.26) \end{gathered}$	99	102	38.0\%
					101	102	20.3\%
6	4.483	277	0.1158	$\begin{aligned} & 175.55 \\ & (40.20) \end{aligned}$	99	102	29.1\%
					100	103	45.8\%
					101	102	19.4\%
7	4.740	262	0.1935	$\begin{gathered} 5.97 \\ (-3.36) \end{gathered}$	98	102	29.5\%
					99	103	48.7\%
8	4.844	256	0.1243	$\begin{gathered} 99.51 \\ (90.36) \end{gathered}$	98	103	36.4\%
					99	102	24.5\%

					100	105	24.1\%
9	4.955	250	0.0403	$\begin{gathered} -9.31 \\ (-12.01) \end{gathered}$	98	105	15.9\%
					99	104	22.4\%
					101	104	18.9\%
10	5.041	246	0.0848	$\begin{gathered} 6.18 \\ (-2.94) \end{gathered}$	98	102	18.8\%
					99	105	20.7\%
					100	104	23.5\%
11	5.043	246	0.0328	$\begin{gathered} 41.75 \\ (46.36) \end{gathered}$	98	103	33.4\%
					101	104	32.2\%
12	5.096	243	0.0866	$\begin{gathered} -69.98 \\ (-79.81) \end{gathered}$	101	105	60.4\%
13	5.235	237	0.1009	$\begin{gathered} 0.58 \\ (9.66) \end{gathered}$	97	102	26.8\%
					100	104	44.7\%
14	5.327	233	0.6304	$\begin{gathered} 372.46 \\ (411.10) \end{gathered}$	100	105	51.2\%
					101	104	24.0\%
15	5.438	228	0.0294	$\begin{gathered} 13.46 \\ (26.48) \end{gathered}$	97	102	27.5\%
					99	105	40.7\%
16	5.497	226	0.0057	$\begin{aligned} & -15.61 \\ & (15.66) \end{aligned}$	96	102	25.0\%
					99	104	45.8\%
17	5.553	223	0.1254	$\begin{gathered} 47.29 \\ (31.13) \end{gathered}$	96	103	24.8\%
18	5.567	223	0.0017	$\begin{gathered} 27.79 \\ (-51.13) \end{gathered}$	97	103	62.2\%

					98	105	20.8\%
19	5.747	216	0.2113	$\begin{gathered} 226.84 \\ (251.78) \end{gathered}$	96	102	25.7\%
					98	105	46.4\%
20	5.754	215	0.1756	$\begin{gathered} -234.34 \\ (-247.23) \end{gathered}$	96	103	25.2\%
					98	104	39.1\%

${ }^{\text {a }}$ In units of eV ; ${ }^{\mathrm{b}}$ In units of nm ; ${ }^{\text {c }}$ Dimensionless; ${ }^{\mathrm{d}} \mathrm{In}$ units of $10^{-40} \mathrm{esu}^{2} \mathrm{~cm}^{2}$;
${ }^{e}$ Calculated using the square of the coefficients printed by the G16 program.

Figure $\mathbf{5 8}$ Molecular orbitals involved in the excitations for (M)-exo-dithia[7]helicene. Values in parentheses are orbital energies in eV . Iso values ± 0.030 a.u., ground state geometry.

Figure S9 Normalized absorption, ECD, vibrationally resolved singlet emission and CPL spectra alongside the optimized ground state structure of (M)-endo-dithia[9]helicene obtained with CAM-B3LYP/def2-SV(P). Calculated spectra were shifted by -0.40 eV (green curves). Hydrogen atoms are white, carbon atoms are black, sulfur atoms are yellow.

Table S2 Twenty lowest excitation energies, oscillator strengths, rotatory strengths, and orbital contributions for the transitions (greater than 15.0%) of (M)-endo-dithia[9]helicene. The values in parentheses are rotatory strengths calculated for the $S_{1}-S_{0}$ transition (on the S_{1} geometry).

Excitation number	Excitation energy ${ }^{\text {a }}$	Wavelength ${ }^{\text {b }}$	Oscillator strength ${ }^{\text {c }}$	Rotatory strength ${ }^{\text {d }}$	Occupied orbital	Virtual orbital	Percentage ${ }^{\text {e }}$
1	3.364	369	0.0001	$\begin{gathered} 0.20 \\ (0.21) \end{gathered}$	126	128	32.8\%
					127	129	48.4\%
2	3.534	351	0.0492	$\begin{aligned} & -433.79 \\ & (-399.67) \end{aligned}$	127	128	84.0\%
3	3.652	340	0.0630	$\begin{aligned} & -584.39 \\ & (-741.53) \end{aligned}$	125	128	29.6\%
					126	129	55.8\%
4	3.817	325	0.0529	$\begin{aligned} & -244.22 \\ & (-56.83) \end{aligned}$	124	129	42.0\%
					125	128	19.6\%
5	3.915	317	0.0015	$\begin{gathered} 7.92 \\ (2.39) \end{gathered}$	124	128	19.3\%
					125	129	56.1\%
6	4.026	308	0.1342	$\begin{gathered} 487.33 \\ (372.31) \end{gathered}$	126	128	53.5\%
					127	129	34.8\%
7	4.210	295	0.0015	$\begin{gathered} 17.33 \\ (152.41) \end{gathered}$	124	128	44.6\%
					125	129	22.5\%
8	4.219	294	0.0750	$\begin{gathered} 160.26 \\ (148.47) \end{gathered}$	124	129	34.0\%
					125	128	33.9\%
					126	129	16.4\%
9	4.363	284	0.0226	35.77 (14.13)	122	129	18.1\%

					123	128	18.9%
10						125	130
						19.8%	
11	4.557						

					123	128	16.0\%
19	5.022	247	0.0841	$\begin{gathered} -133.94 \\ (-169.21) \end{gathered}$	124	131	27.8\%
					126	131	32.0\%
20	5.040	246	0.2230	$\begin{aligned} & -203.58 \\ & (-161.17) \end{aligned}$	124	130	33.9\%
					125	131	19.0\%
					126	130	18.3\%

${ }^{\text {a }}$ In units of eV ; ${ }^{\mathrm{b}}$ In units of nm ; ${ }^{\text {c }}$ Dimensionless; ${ }^{\mathrm{d}}$ In units of $10^{-40} \mathrm{esu}^{2} \mathrm{~cm}^{2}$;
${ }^{e}$ Calculated using the square of the coefficients printed by the G16 program.

Figure S10 Molecular orbitals involved in the excitations for (M)-endo-dithia[9]helicene. Values in parentheses are orbital energies in eV. Iso values ± 0.030 a.u., ground state geometry.
(M)-exo-dithia[9]helicene

Figure S11 Normalized absorption, ECD, vibrationally resolved singlet emission and CPL spectra alongside the ground state structure of (M)-exo-dithia[9]helicene obtained with CAM-B3LYP/def2-SV(P). Calculations were performed with the (P) isomer. The sign of the ECD and CPL spectra and the optimized geometry were inverted. Calculated spectra were shifted by -0.40 eV (blue curves). Hydrogen atoms are white, carbon atoms are black, sulfur atoms are yellow.

Table S3 Twenty lowest excitation energies, oscillator strengths, rotatory strengths, and orbital contributions for the transitions (greater than 15.0 \%) of (M)-exo-dithia[9]helicene. Calculations were performed with the (P) isomer, the sign of the rotatory strength was inverted for the (M) enantiomer. The values in parentheses are rotatory strengths calculated for the $S_{1}-S_{0}$ transition (on the S_{1} geometry).

Excitation number	Excitation energy ${ }^{\text {a }}$	Wavelength ${ }^{\text {b }}$	Oscillator strength ${ }^{\text {c }}$	Rotatory strength ${ }^{\text {d }}$	Occupied orbital	Virtual orbital	Percentage ${ }^{\text {e }}$
1	3.384	366	0.0002	$\begin{gathered} 2.52 \\ (3.13) \end{gathered}$	126	129	32.9\%
					127	128	47.7\%
2	3.597	345	0.0081	-22.40 (4.59)	126	128	27.9\%
					127	129	60.4\%
3	3.677	337	0.1460	$\begin{aligned} & -1180.00 \\ & (-1112.06) \end{aligned}$	126	128	56.9\%
					127	129	18.9\%
4	3.842	323	0.0019	3.40	124	128	34.3\%

${ }^{\text {a }}$ In units of eV ; ${ }^{\mathrm{b}}$ In units of nm ; ${ }^{\text {c }}$ Dimensionless; ${ }^{\text {d }}$ In units of $10^{-40} \mathrm{esu}^{2} \mathrm{~cm}^{2}$;
${ }^{\text {e }}$ Calculated using the square of the coefficients printed by the G16 program.

Figure S12 Molecular orbitals involved in the excitations for (M)-exo-dithia[9]helicene. Values in parentheses are orbital energies in eV . Iso values ± 0.030 a.u., ground state geometry calculated with the (P) isomer and subsequently inverted.
(M)-endo-dithia[7]helicene

Figure S13 Normalized absorption and ECD spectra alongside the optimized ground state structure of (M)-endo-dithia[7]helicene obtained with CAM-B3LYP/def2-SV(P). Calculations were performed with the (P) isomer. The sign of the ECD spectrum and the optimized geometry were inverted. Calculated spectra were shifted by -0.40 eV (red curves). Hydrogen atoms are white, carbon atoms are black, sulfur atoms are yellow.

Table S4 Twenty lowest excitation energies, oscillator strengths, rotatory strengths, and orbital contributions for the transitions (greater than 15.0%) of (M)-endo-dithia[7]helicene. Calculations were performed with the (P) isomer, the sign of the rotatory strength was inverted for the (M) enantiomer.

Excitation number	Excitation energy ${ }^{\text {a }}$	Wavelength ${ }^{\text {b }}$	Oscillator strength ${ }^{\text {c }}$	Rotatory strength ${ }^{\text {d }}$	Occupied orbital	Virtual orbital	Percentage ${ }^{\text {e }}$
1	3.548	349	0.0011	-1.87	100	102	38.8\%
					101	103	51.3\%
2	3.730	332	0.0525	-258.66	101	102	80.3\%
3	3.967	313	0.0533	-334.17	99	102	50.5\%
					100	103	35.4\%
4	4.196	296	0.2680	-411.72	98	103	28.1\%
					100	103	35.4\%
5	4.241	292	0.0101	20.72	98	102	15.6\%
					99	103	62.5\%
6	4.401	282	0.2757	493.59	100	102	45.4\%
					101	103	40.6\%
7	4.615	269	0.2020	26.07	98	103	43.6\%
					99	102	24.5\%
8	4.669	266	0.1603	303.15	98	102	58.9\%
					99	103	26.0\%
9	4.881	254	0.0173	-57.68	96	103	16.0\%

					97	102	34.3\%
					99	104	23.3\%
10	5.065	245	0.0345	48.63	101	104	69.3\%
11	5.113	243	0.0030	-5.85	97	103	56.9\%
12	5.170	240	0.0258	-5.34	98	103	20.6\%
					100	104	17.9\%
					101	105	42.7\%
13	5.306	234	0.0283	-61.75	97	102	50.5\%
					98	105	15.8\%
14	5.317	233	0.0799	-9.51	96	102	23.8\%
					99	105	15.4\%
					100	104	37.4\%
15	5.448	228	0.2459	410.02	99	104	36.2\%
					100	105	38.9\%
16	5.464	227	0.0854	-1.56	97	103	23.8\%
					99	105	33.5\%
17	5.540	224	0.4434	-255.44	96	102	25.1\%
					100	104	22.9\%
					101	105	23.9\%
18	5.596	222	0.2679	-191.57	96	103	27.8\%
					99	104	15.5\%
					100	105	30.9\%
19	5.791	214	0.0500	-72.18	98	104	61.4\%
					99	105	17.1\%
20	5.841	212	0.1786	333.58	96	103	19.3\%
					98	105	47.0\%

${ }^{\text {a }}$ In units of eV ; ${ }^{\mathrm{b}}$ In units of nm ; ${ }^{\text {c }}$ Dimensionless; ${ }^{\text {d }}$ In units of $10^{-40} \mathrm{esu}^{2} \mathrm{~cm}^{2}$;
${ }^{e}$ Calculated using the square of the coefficients printed by the G16 program.

Figure S14 Molecular orbitals involved in the excitations for (M)-endo-dithia[7]helicene. Values in parentheses are orbital energies in eV. Iso values ± 0.030 a.u., ground state geometry calculated with the (P) isomer and subsequently inverted.

Table S7 Experimental and calculated dissymmetry factors (g_{LUM}) for (M)-exo-dithia[7]helicene, (M)-endodithia[9]helicene, and (M)-exo-dithia[9]helicene.

Compound	$\boldsymbol{g}_{\text {Lum, }}$ expt $^{\mathbf{a}}$	Expt. wavelength $^{\mathbf{b}}$	$\boldsymbol{g}_{\text {Lum, }}$ calc $^{\mathbf{a}, \mathbf{c}}$	Calc. wavelength $^{\mathbf{b}, \mathbf{d}}$	Excitation energy $^{\mathbf{e}}$	Excitation energy, $^{\text {shifted }}$
(M)-exo-thia-heptahelicene	0.005	470	0.0024	470.0	3.04	2.64
(M)-endo-thia-nonahelicene	-0.0123	470	-0.024	470.4	3.04	2.64
(M)-exo-thia-nonahelicene	-0.0042	475	-0.019^{f}	469.0	3.04	2.64

${ }^{\text {a }}$ Dimensionless; ${ }^{\mathrm{b}} \mathrm{In} \mathrm{nm} ;{ }^{\mathrm{c}}$ Calculated as $\Delta I / I$ at the wavelengths given in column 5 (see text); ${ }^{\mathrm{d}}$ After shifting; ${ }^{\mathrm{e}} \mathrm{In} \mathrm{eV}$; ${ }^{f}$ After sign change from the calculations with the (P) enantiomer.

(M)-exo-dithia[9]helicene

(M)-endo-dithia[9]helicene

(M)-exo-dithia[9]helicene

Figure S15 Optimized S_{0} (red) and S_{1} (blue) geometries superimposed with one another for (M)-exo-thiaheptahelicene (left), (M)-endo-thia-nonahelicene (middle), and (M)-exo-thia-nonahelicene (right).

Figure S16 Calculated CPL spectra including Franck-Condon (FC, orange lines), Herzberg-Teller (HT, blue lines), and FCHT effects (red lines) compared to the experimental spectra for (M)-exo-dithia[7]helicene (top left, panel A), (M)-endo-dithia[9]helicene (top right, panel B), and (M)-exo-dithia[9]helicene (bottom, panel C; calculations were performed with (P)-exo-dithia[9]helicene and the sign of the CPL spectra was inverted). Calculated spectra are Gaussian broadened ($\sigma=0.0248 \mathrm{eV}$) and shifted by -0.40 eV . Experimental spectra were scaled to match the calculated intensities.

Table S8 Vibrational normal modes implied in the most intense vibronic transitions for the M isomers of exo-dithia[7]helicene, endo-dithia[9]helicene, and exo-dithia[9]helicene. The numbering follows the G16 output.

Molecule	Normal modes \#	Wavenumber (cm^{-1})
(M)-exo-dithia[7]helicene	2	56
	4	97
	9	215
	15	338
	89	1428
	92	1455
(M)-endo-dithia[9]helicene	3	54
	11	154
	19	312
	22	370
	25	428
	42	630
	113	1421
	115	1428
	121	1467
	128	1584
(M)-exo-dithia[9]helicene	3	55
	7	107
	25	421
	42	631
	115	1426
	117	1437
	119	1453
	120	1453
	128	1593
	133	1676

(M)-exo-dithia[7]helicene

Normal mode 2
$56 \mathrm{~cm}^{-1}$

Normal mode 15
$338 \mathrm{~cm}^{-1}$

Normal mode 4 $97 \mathrm{~cm}^{-1}$

Normal mode 89
$1428 \mathrm{~cm}^{-1}$

Normal mode 9 $215 \mathrm{~cm}^{-1}$
Normal mode 92 $1455 \mathrm{~cm}^{-1}$

Figure S17 Selected vibrational normal modes for (M)-exo-dithia[7]helicene related to the most intense vibronic peaks in the calculated CPL spectra. The green vectors indicate the direction of the displacement for the corresponding frequency (in cm^{-1}). The numbers refer to the order the normal modes appear in the G16 output.
(M)-endo-dithia[9]helicene

Figure S18 Selected vibrational normal modes for (M)-endo-dithia[9]helicene related to the most intense vibronic peaks in the calculated CPL spectra. The green vectors indicate the direction of the displacement for the corresponding frequency (in cm^{-1}). The numbers refer to the order the normal modes appear in the G16 output.

(M)-exo-dithia[9]helicene

Figure S19 Selected vibrational normal modes for (M)-exo-dithia[9]helicene related to the most intense vibronic peaks in the calculated CPL spectra. The green vectors indicate the direction of the displacement for the corresponding frequency (in cm^{-1}). The numbers refer to the order the normal modes appear in the G16 output.

2. Optimized structures in Cartesian coordinates (xyz format).

(P)-endo-dithia[7]helicene, S_{0}.
$\begin{array}{llll}\text { S } & 0.022427 & -0.977779 & 2.079089\end{array}$
$\begin{array}{llll}\text { C } & -0.619896 & -2.461030 & 2.686901\end{array}$
$\begin{array}{llll}\text { H } & -0.074606 & -3.003020 & 3.459903\end{array}$
C $\quad-1.788297 \quad-2.811961 \quad 2.095641$
H $\quad-2.352626-3.714159 \quad 2.337761$
$\begin{array}{lllll}\text { C } & -2.221458 & -1.843856 & 1.127865\end{array}$
C $\quad-3.443396-1.8428310 .413676$
$\begin{array}{llll}\text { H } & -4.127754 & -2.689874 & 0.508340\end{array}$
C $\quad-3.778465-0.745513-0.326903$
H $\quad-4.748980-0.690497-0.827102$
$\begin{array}{llll}\text { C } & -2.904462 & 0.372490 & -0.434878\end{array}$
$\begin{array}{llll}\text { C } & -3.384043 & 1.571254 & -1.045337\end{array}$
$\begin{array}{llll}\text { H } & -4.387279 & 1.570078 & -1.479627\end{array}$
$\begin{array}{lllll}\text { C } & -2.654755 & 2.715014 & -0.981517\end{array}$
$\begin{array}{llll}H & -3.065191 & 3.664582 & -1.335155\end{array}$
$\begin{array}{lllll}\text { C } & -1.323161 & 2.698979 & -0.466537\end{array}$
$\begin{array}{lllll}\text { C } & -0.619763 & 3.922723 & -0.280841\end{array}$
$\begin{array}{llll}H & -1.124696 & 4.859746 & -0.530157\end{array}$
$\begin{array}{llll}C & 0.620797 & 3.922565 & 0.280892\end{array}$
$\begin{array}{llll}\text { H } & 1.125990 & 4.859464 & 0.530159\end{array}$
$\begin{array}{llll}\text { C } & 1.323882 & 2.698644 & 0.466599\end{array}$
$\begin{array}{llll}C & 2.655500 & 2.714339 & 0.981544\end{array}$
$\begin{array}{llll}\text { H } & 3.066184 & 3.663805 & 1.335172\end{array}$
$\begin{array}{llll}C & 3.384511 & 1.570407 & 1.045310\end{array}$
$\begin{array}{llll}H & 4.387770 & 1.568978 & 1.479544\end{array}$
$\begin{array}{llll}C & 2.904616 & 0.371771 & 0.434824\end{array}$
$\begin{array}{llll}C & 3.778366 & -0.746409 & 0.326730\end{array}$
$\begin{array}{llll}\text { H } & 4.748932 & -0.691647 & 0.826862\end{array}$
$\begin{array}{llll}C & 3.443007 & -1.843600 & -0.413910\end{array}$
$\begin{array}{llll}\text { H } & 4.127142 & -2.690816 & -0.508633\end{array}$

C $\quad 2.221007$-1.844312 -1.127981
$\begin{array}{lllll}C & 1.787441 & -2.812394 & -2.095595\end{array}$
H $\quad 2.351511 \quad-3.714753-2.337726$
C $\quad 0.619182 \quad-2.461076-2.686897$
H $\quad 0.073710$-3.002890 -3.459891
S -0.022739 -0.977671 -2.079020
$\begin{array}{llll}\text { C } & 1.318406 & -0.776436 & -0.980701\end{array}$
$\begin{array}{llll}\text { C } & 1.599917 & 0.339615 & -0.128414\end{array}$
$\begin{array}{llll}C & 0.718490 & 1.471944 & 0.100875\end{array}$
$\begin{array}{llll}\text { C } & -0.718110 & 1.472133 & -0.100728\end{array}$
$\begin{array}{llll}\text { C } & -1.599838 & 0.340035 & 0.128512\end{array}$
$\begin{array}{llll}\text { C } & -1.318661 & -0.776128 & 0.980774\end{array}$
(M)-exo-dithia[7]helicene, S_{0}.
$\begin{array}{llll}\text { S } & -2.951929 & -1.695065 & 1.999248\end{array}$
$\begin{array}{llll}\text { C } & -1.707859 & -2.190401 & 0.894692\end{array}$
$\begin{array}{llll}\text { C } & -1.730163 & -3.376745 & 0.134322\end{array}$
H $\quad-2.606338$-4.029124 0.141831
$\begin{array}{llll}\text { C } & -0.596269 & -3.718651 & -0.549446\end{array}$
H $\quad-0.544678$-4.668135 -1.088923
$\begin{array}{llll}\text { C } & 0.550600 & -2.874762 & -0.560192\end{array}$
C $\quad 1.762724 \quad-3.354134-1.146676$
H $\quad 1.762225$-4.341539 -1.615996
C $\quad 2.911566-2.640262-1.028168$
H $\quad 3.865337$-3.048796
C $\quad 2.895472 \quad-1.320913 \quad-0.480126$
C $\quad 4.120866-0.622363-0.283488$
$\begin{array}{llll}\text { H } & 5.057395 & -1.126761 & -0.535846\end{array}$
$\begin{array}{llll}C & 4.121986 & 0.614978 & 0.283588\end{array}$
$\begin{array}{llll}H & 5.059426 & 1.117669 & 0.535973\end{array}$
$\begin{array}{llll}C & 2.897858 & 1.315760 & 0.480171\end{array}$
$\begin{array}{llll}C & 2.916313 & 2.635085 & 1.028203\end{array}$
$\begin{array}{llll}H & 3.870810 & 3.041895 & 1.372713\end{array}$

C	1.768761	3.351041	1.146657
H	1.770027	4.338454	1.615953
C	0.555790	2.873852	0.560140
C	-0.589569	3.719798	0.549330
H	-0.536304	4.669188	1.088806
C	-1.724054	3.379888	-0.134447
H	-2.599076	4.033808	-0.141984
C	-1.703869	2.193457	-0.894751
S	-2.948889	1.700176	-1.999157
C	-1.991138	0.359901	-2.522994
H	-2.362839	-0.301790	-3.305129
C	-0.801130	0.272568	-1.877694
H	-0.065984	-0.491906	-2.113651
C	-0.609176	1.313917	-0.897922
C	0.525474	1.597828	-0.061281
C	1.669123	0.715968	0.111762
C	1.667811	-0.718901	-0.111749
C	0.522558	-1.598698	0.061262
C	-0.611588	-1.312820	0.897913
C	-0.801674	-0.271218	1.877786
H	-0.065170	0.491932	2.113788
C	-1.991944	-0.356301	2.522892
H	-2.362555	0.306085	3.304959
C			

(M)-exo-dithia[7]helicene, S_{1}.

S	-2.9476010	-1.6193400	2.0400590
C	-1.7107500	-2.1515770	0.9483820
C	-1.7591800	-3.3294820	0.1795540
H	-2.6474940	-3.9644140	0.1816740
C	-0.6284040	-3.6864750	-0.5201050
H	-0.6045400	-4.6287250	-1.0742830
C	0.5315470	-2.8738820	-0.5305960
C	1.7193170	-3.3353350	-1.1565780

H	1.7073410	-4.3135420	-1.6446220
C	2.8909640	-2.6147930	-1.0789750
H	3.8205480	-3.0294400	-1.4783720
C	2.9189820	-1.3298280	-0.4925470
C	4.1306320	-0.6376000	-0.2883670
H	5.0700180	-1.1331220	-0.5462850
C	4.1329200	0.6228270	0.2885790
H	5.0741020	1.1149570	0.5464460
C	2.9237970	1.3194820	0.4926780
C	2.9004540	2.6046580	1.0788520
H	3.8315380	3.0159920	1.4781840
C	1.7314590	3.3295320	1.1561960
H	1.7230530	4.3078980	1.6439950
C	0.5420390	2.8723010	0.5302460
C	-0.6149260	3.6891400	0.5194510
H	-0.5876300	4.6314690	1.0733390
C	-1.7469790	3.3360770	-0.1801450
H	-2.6329620	3.9742610	-0.1824940
C	-1.7028740	2.1577170	-0.9485380
S	-2.9416570	1.6295850	-2.0400210
C	-1.9618020	0.2998240	-2.5623460
H	-2.3300820	-0.3759290	-3.3338840
C	-0.7644270	0.2426390	-1.9261290
H	-0.0148010	-0.5114240	-2.1535530
C	-0.5854580	1.2942690	-0.9582230
C	0.5401850	1.5851690	-0.1200150
C	1.6628140	0.7114030	0.0842790
C	1.6602170	-0.7172230	-0.0840640
C	0.5343830	-1.5869270	0.1200200
C	-0.5901730	-1.2922320	0.9583860
C	-0.7652200	-0.2404610	1.9268630
H	-0.0127870	0.5106630	2.1547160
C	-1.9627910	-0.2935170	2.5630660

(M)-endo-dithia[9]helicene, S_{o}.
$\begin{array}{llll}\text { S } & -2.596477 & 0.736645 & 1.350663\end{array}$
$\begin{array}{llll}\text { C } & -4.011172 & -0.249243 & 1.456835\end{array}$
$\begin{array}{llll}\text { H } & -4.994475 & 0.220994 & 1.431960\end{array}$
C $\quad-3.727270 \quad-1.570989 \quad 1.561880$
H $\quad-4.481264 \quad-2.3556561 .645576$
C $\quad-2.313550 \quad-1.825312 \quad 1.588930$
C $\quad-1.670694 \quad-3.064067 \quad 1.832001$
H $\quad-2.265262$-3.977762 1.912753
$\begin{array}{llll}\text { C } & -0.321781 & -3.080569 & 2.045883\end{array}$
$\begin{array}{llll}\text { H } & 0.183821 & -4.010539 & 2.319144\end{array}$
C $\quad 0.457907 \quad 1.890936 \quad 1.968736$
C $\quad 1.810438$-1.906032 $\quad 2.430674$

H $\quad 2.239862$-2.857227 2.756152
$\begin{array}{lllll}C & 2.502502 & -0.745581 & 2.572386\end{array}$
$\begin{array}{llll}H & 3.491346 & -0.734638 & 3.038495\end{array}$

C $\quad 1.970893 \quad 0.483352 \quad 2.073927$
$\begin{array}{llll}C & 2.674324 & 1.706454 & 2.279659\end{array}$
$\begin{array}{llll}H & 3.599086 & 1.685198 & 2.862606\end{array}$
$\begin{array}{llll}C & 2.160736 & 2.883078 & 1.826100\end{array}$

H $\quad 2.639531 \quad 3.836040 \quad 2.066923$
$\begin{array}{llll}\text { C } & 1.034567 & 2.885649 & 0.953174\end{array}$
$\begin{array}{llll}C & 0.531439 & 4.111962 & 0.425764\end{array}$
$\begin{array}{llll}H & 0.983891 & 5.049483 & 0.759978\end{array}$
C $\quad-0.529850 \quad 4.112110-0.426003$
$\begin{array}{llll}\mathrm{H} & -0.982025 & 5.049754 & -0.760258\end{array}$
$\begin{array}{llll}\text { C } & -1.033426 & 2.885943 & -0.953338\end{array}$
C $\quad-2.159649 \quad 2.883737-1.826169$
H $\quad-2.638123 \quad 3.836853-2.066997$
$\begin{array}{llll}\text { C } & -2.673681 & 1.707260 & -2.279659\end{array}$
$\begin{array}{llll}\text { H } & -3.598447 & 1.686299 & -2.862606\end{array}$

C	-1.970694	0.483920	-2.073911
C	-2.502738	-0.744842	-2.572384
H	-3.491554	-0.733491	-3.038532
C	-1.811101	-1.905547	-2.430663
H	-2.240807	-2.856592	-2.756204
C	-0.458556	-1.890919	-1.968713
C	0.320785	-3.080806	-2.045903
H	-0.185134	-4.010579	-2.319234
C	1.669688	-3.064728	-1.831956
H	2.264003	-3.978574	-1.912690
C	2.312898	-1.826137	-1.588834
C	3.726709	-1.572183	-1.561832
H	4.480453	-2.357070	-1.645532
C	4.010921	-0.250500	-1.456794
H	4.994360	0.219480	-1.431956
S	2.596518	0.735789	-1.350577
C	1.548271	-0.656803	-1.444548
C	0.120519	-0.668520	-1.539283
C	-0.742722	0.487980	-1.377358
C	-0.428744	1.660245	-0.584758
C	0.429501	1.660157	0.584610
C	0.742917	0.487855	1.377411
C	-0.120802	-0.668324	1.539366
C	-1.548572	-0.656148	1.444612
	-1.20		

(M)-endo-dithia[9]helicene, S_{1}.

S	2.6144610	0.7588340	-1.3521070
C	4.0335190	-0.2268340	-1.3955320
H	5.0151380	0.2458330	-1.3552400
C	3.7566980	-1.5531670	-1.4776190
H	4.5161960	-2.3356490	-1.5226400
C	2.3468380	-1.8144400	-1.5349620
C	1.7087680	-3.0597140	-1.7512530

H	2.3045720	-3.9748950	-1.7951110
C	0.3582420	-3.0861340	-1.9803550
H	-0.1411030	-4.0269440	-2.2265420
C	-0.4259130	-1.9017440	-1.9451190
C	-1.7820430	-1.9314280	-2.3747160
H	-2.2138570	-2.8903210	-2.6729910
C	-2.5016020	-0.7738850	-2.5114200
H	-3.5054710	-0.7923230	-2.9440790
C	-1.9784000	0.4661180	-2.0658120
C	-2.6913960	1.6741810	-2.2567770
H	-3.6294440	1.6463690	-2.8171560
C	-2.1857320	2.8717480	-1.7942570
H	-2.6922060	3.8134040	-2.0225860
C	-1.0493230	2.8986500	-0.9589660
C	-0.5351050	4.1078480	-0.4397600
H	-0.9777220	5.0511070	-0.7710100
C	0.5317440	4.1085490	0.4379240
H	0.9734060	5.0523660	0.7688610
C	1.0471420	2.9000440	0.9575560
C	2.1834640	2.8744230	1.7929540
H	2.6891960	3.8165690	2.0208850
C	2.6900640	1.6774050	2.2561400
H	3.6281430	1.6506820	2.8165300
C	1.9781560	0.4687130	2.0656440
C	2.5022810	-0.7707640	2.5113760
H	3.5062120	-0.7884870	2.9439330
C	1.7835230	-1.9289720	2.3750640
H	2.2162240	-2.8874090	2.6735230
C	0.4273450	-1.9004780	1.9457530
C	-0.3560260	-3.0853720	1.9813490
H	0.1439570	-4.0258150	2.2276540
C	-1.7066260	-3.0599270	1.7524770
H	-2.3017480	-3.9755300	1.7966500

C	-2.3455750	-1.8151580	1.5359230
C	-3.7555520	-1.5547400	1.4785630
H	-4.5145960	-2.3376440	1.5238740
C	-4.0331990	-0.2285770	1.3960770
H	-5.0151360	0.2434200	1.3556850
S	-2.6147900	0.7579780	1.3520820
C	-1.5756810	-0.6398940	1.4407500
C	-0.1531440	-0.6545610	1.5506320
C	0.7099610	0.4907400	1.3893680
C	0.4127110	1.6473690	0.5863150
C	-0.4139060	1.6467550	-0.5872230
C	-0.7104180	0.4893810	-1.3895890
C	0.1535930	-0.6554100	-1.5503100
C	1.5761760	-0.6396830	-1.4401660

(P)-exo-dithia[9]helicene, So.

S $\quad-3.956099$-1.470825 -1.409333
C $\quad-2.238556-1.711280 \quad-1.505148$
$\begin{array}{llll}\text { C } & -1.606585 & -2.948871 & -1.744316\end{array}$
H $\quad-2.186700$-3.873434 -1.789206
C $\quad-0.262404-2.941719-1.995764$
H $\quad 0.251502$-3.868428 -2.264458
C $\quad 0.498856-1.738827-1.948974$
$\begin{array}{lllll}\text { C } & 1.850544 & -1.745851 & -2.414351\end{array}$
H 2.288653 -2.694783 -2.734790
C $\quad 2.534627 \quad-0.581200 \quad-2.556295$
$\begin{array}{llll}\text { H } & 3.525216 & -0.564214 & -3.018393\end{array}$
$\begin{array}{llll}C & 1.993927 & 0.644193 & -2.059237\end{array}$
$\begin{array}{llll}\text { C } & 2.696570 & 1.868640 & -2.259030\end{array}$
$\begin{array}{lllll}H & 3.624508 & 1.849957 & -2.836927\end{array}$
$\begin{array}{lllll}\text { C } & 2.180253 & 3.042976 & -1.803669\end{array}$
$\begin{array}{llll}H & 2.658849 & 3.997477 & -2.038693\end{array}$
$\begin{array}{lllll}C & 1.046215 & 3.041057 & -0.939667\end{array}$
$\begin{array}{llll}\text { C } & 0.535623 & 4.268567 & -0.418898\end{array}$
$\begin{array}{llll}H & 0.991605 & 5.205997 & -0.748528\end{array}$
C $\quad-0.536062 \quad 4.268520 \quad 0.418823$
$\begin{array}{llll}H & -0.992162 & 5.205907 & 0.748396\end{array}$
$\begin{array}{llll}\text { C } & -1.046524 & 3.040970 & 0.939635\end{array}$
$\begin{array}{llll}\text { C } & -2.180564 & 3.042784 & 1.803602\end{array}$
$\begin{array}{llll}H & -2.659313 & 3.997221 & 2.038575\end{array}$
$\begin{array}{llll}\text { C } & -2.696720 & 1.868403 & 2.259054\end{array}$
$\begin{array}{llll}H & -3.624634 & 1.849668 & 2.836996\end{array}$
$\begin{array}{llll}\text { C } & -1.993943 & 0.644053 & 2.059297\end{array}$
$\begin{array}{llll}\text { C } & -2.534540 & -0.581396 & 2.556348\end{array}$
$\begin{array}{llll}\text { H } & -3.525142 & -0.564488 & 3.018426\end{array}$
$\begin{array}{llll}\text { C } & -1.850392 & -1.745997 & 2.414389\end{array}$
$\begin{array}{llll}\text { H } & -2.288459 & -2.694970 & 2.734771\end{array}$
$\begin{array}{llll}\text { C } & -0.498710 & -1.738857 & 1.948985\end{array}$
$\begin{array}{llll}\text { C } & 0.262631 & -2.941695 & 1.995696\end{array}$
$\begin{array}{llll}\text { H } & -0.251206 & -3.868470 & 2.264319\end{array}$
$\begin{array}{lllll}C & 1.606802 & -2.948772 & 1.744194\end{array}$
H $\quad 2.186926$-3.873338 1.788966
$\begin{array}{llll}\text { C } & 2.238709 & -1.711139 & 1.505101\end{array}$
$\begin{array}{llll}\text { S } & 3.956232 & -1.470539 & 1.409320\end{array}$
$\begin{array}{llll}C & 3.739819 & 0.243364 & 1.327088\end{array}$
$\begin{array}{llll}H & 4.608189 & 0.900020 & 1.277748\end{array}$
$\begin{array}{llll}C & 2.435423 & 0.614365 & 1.340974\end{array}$
$\begin{array}{llll}\text { H } & 2.124011 & 1.655834 & 1.326449\end{array}$
$\begin{array}{llll}\text { C } & 1.527589 & -0.504582 & 1.417805\end{array}$
$\begin{array}{llll}\text { C } & 0.094125 & -0.521009 & 1.530333\end{array}$
$\begin{array}{llll}\text { C } & -0.760422 & 0.643088 & 1.370310\end{array}$
$\begin{array}{llll}C & -0.437768 & 1.814950 & 0.579528\end{array}$
$\begin{array}{lllll}C & 0.437672 & 1.814986 & -0.579476\end{array}$
$\begin{array}{llll}\text { C } & 0.760417 & 0.643112 & -1.370263\end{array}$
C $\quad-0.094066-0.521015-1.530296$
C $\quad-1.527536-0.504674-1.417775$
$\begin{array}{llll}\text { C } & -2.435452 & 0.614187 & -1.340908\end{array}$
$\begin{array}{llll}\text { H } & -2.124151 & 1.655681 & -1.326328\end{array}$
C $\quad-3.739828 \quad 0.243078 \quad-1.327015$
H $-4.608200 \quad 0.899720$-1.277592
(P)-exo-dithia[9]helicene, S_{1}.
S $\quad-3.9714570-1.4472340 \quad-1.3476280$

C $\quad-2.2566110 \quad-1.6972110 \quad-1.4682000$
$\begin{array}{llll}\text { C } & -1.6288630 & -2.9403940 & -1.6727340\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.2096490 & -3.8652670 & -1.6866550\end{array}$
C $\quad-0.2792450 \quad-2.9443670 \quad-1.9266200$
$\begin{array}{llll}\mathrm{H} & 0.2304480 & -3.8822320 & -2.1626750\end{array}$
$\begin{array}{llll}C & 0.4853090 & -1.7490990 & -1.9140130\end{array}$
C $\quad 1.8479630 \quad-1.7731430 \quad-2.3290750$
$\begin{array}{llll}\mathrm{H} & 2.2908480 & -2.7311100 & -2.6139480\end{array}$
C $\quad 2.5635920 \quad-0.6137360 \quad-2.4573350$
$\begin{array}{llll}\mathrm{H} & 3.5758990 & -0.6289420 & -2.8698220\end{array}$
$\begin{array}{llll}C & 2.0270440 & 0.6253420 & -2.0226880\end{array}$
$\begin{array}{llll}C & 2.7435660 & 1.8334330 & -2.1991450\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.6918420 & 1.8065660 & -2.7419100\end{array}$
$\begin{array}{llll}C & 2.2290260 & 3.0293790 & -1.7425180\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.7375700 & 3.9725940 & -1.9596950\end{array}$
$\begin{array}{llll}C & 1.0749430 & 3.0521750 & -0.9299290\end{array}$
$\begin{array}{llll}C & 0.5453030 & 4.2611460 & -0.4242280\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.9949470 & 5.2052410 & -0.7436590\end{array}$
$\begin{array}{llll}\text { C } & -0.5461620 & 4.2611700 & 0.4232050\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.9959820 & 5.2052710 & 0.7423600\end{array}$
$\begin{array}{llll}C & -1.0755130 & 3.0522500 & 0.9293300\end{array}$
$\begin{array}{llll}C & -2.2294680 & 3.0294930 & 1.7421030\end{array}$
$\begin{array}{llll}\text { H } & -2.7381280 & 3.9726870 & 1.9591070\end{array}$
$\begin{array}{llll}C & -2.7437250 & 1.8335960 & 2.1991690\end{array}$
$\begin{array}{llll}H & -3.6919400 & 1.8067480 & 2.7420480\end{array}$
$\begin{array}{llll}C & -2.0270450 & 0.6255700 & 2.0229230\end{array}$

C	-2.5633580	-0.6134900	2.4578630
H	-3.5756020	-0.6287830	2.8705120
C	-1.8476250	-1.7728490	2.3296520
H	-2.2904070	-2.7308160	2.6146970
C	-0.4850340	-1.7487200	1.9143930
C	0.2796570	-2.9438920	1.9270150
H	-0.2299010	-3.8818060	2.1631670
C	1.6292500	-2.9397930	1.6729950
H	2.2101170	-3.8646160	1.6868740
C	2.2568510	-1.6965630	1.4683200
S	3.9716540	-1.4464010	1.3474620
C	3.7488440	0.2698570	1.3126450
H	4.6147660	0.9296320	1.2624190
C	2.4435490	0.6365260	1.3616110
H	2.1264580	1.6767530	1.3735320
C	1.5417810	-0.4851190	1.4259220
C	0.1108860	-0.5063090	1.5398150
C	-0.7439930	0.6443330	1.3715260
C	-0.4295300	1.8012470	0.5749350
C	0.4291290	1.8011710	-0.5752520
C	0.7439090	0.6440570	-1.3714680
C	-0.1107890	-0.5067160	-1.5396210
C	-1.5416980	-0.4856800	-1.4258520
H	-2.4435870	0.6358600	-1.3616010
H	-1266270	1.6761250	-1.3734550
H	0.2690380	-1.3127560	
H	0.9287510	-1.2625600	

3. Additional structures optimized with ω B97X-D/def2-SV(P).

(M)-exo-dithia[7]helicene, S_{o}.
S $\quad-3.0001210 \quad-1.4270700$
1.9286820

C $\quad-1.7296070 \quad-2.0378780 \quad 0.9151940$
$\begin{array}{llll}\text { C } & -1.7707830 & -3.2542670 & 0.2008810\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.6756520 & -3.8671780 & 0.1902590\end{array}$
$\begin{array}{llll}\text { C } & -0.6208520 & -3.6767840 & -0.4117790\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.5895110 & -4.6520580 & -0.9064020\end{array}$
$\begin{array}{llll}\text { C } & 0.5590660 & -2.8767710 & -0.4152520\end{array}$
$\begin{array}{llll}\text { C } & 1.7763310 & -3.4087070 & -0.9477580\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.7694650 & -4.4201740 & -1.3645530\end{array}$
$\begin{array}{llll}\text { C } & 2.9372140 & -2.7065030 & -0.8490840\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.8885030 & -3.1510520 & -1.1560060\end{array}$
$\begin{array}{llll}\text { C } & 2.9327470 & -1.3528230 & -0.3862420\end{array}$
$\begin{array}{llll}C & 4.1586990 & -0.6397550 & -0.2375710\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.0979200 & -1.1582050 & -0.4516410\end{array}$
$\begin{array}{llll}C & 4.1589190 & 0.6383750 & 0.2377700\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.0983130 & 1.1564710 & 0.4519470\end{array}$
$\begin{array}{llll}C & 2.9332110 & 1.3518830 & 0.3863050\end{array}$
$\begin{array}{llll}C & 2.9381000 & 2.7055900 & 0.8490630\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.8895170 & 3.1498240 & 1.1560310\end{array}$
$\begin{array}{llll}C & 1.7774880 & 3.4082430 & 0.9475670\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.7709830 & 4.4197310 & 1.3643090\end{array}$
$\begin{array}{llll}C & 0.5600550 & 2.8767360 & 0.4150350\end{array}$
$\begin{array}{llll}C & -0.6195980 & 3.6771380 & 0.4115050\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.5879650 & 4.6524330 & 0.9060610\end{array}$
$\begin{array}{llll}C & -1.7696810 & 3.2549310 & -0.2010590\end{array}$
$\begin{array}{llll}H & -2.6743790 & 3.8680890 & -0.1903590\end{array}$
$\begin{array}{llll}C & -1.7289420 & 2.0384740 & -0.9152690\end{array}$
$\begin{array}{llll}\text { S } & -2.9998510 & 1.4277750 & -1.9283260\end{array}$
$\begin{array}{llll}\text { C } & -1.9965420 & 0.1193550 & -2.4505760\end{array}$
$\begin{array}{llll}\text { H } & -2.3711900 & -0.5944650 & -3.1847640\end{array}$

C	-0.7694390	0.1262300	-1.8692510
H	-0.0018900	-0.6048650	-2.1147310
C	-0.5923900	1.2150680	-0.9401190
C	0.5513130	1.5750470	-0.1483610
C	1.7079630	0.7220000	0.0628890
C	1.7077050	-0.7225150	-0.0629070
C	0.5507590	-1.5751370	0.1482490
C	-0.5927890	-1.2148550	0.9400500
C	-0.7693790	-0.1260880	1.8693560
H	-0.0015600	0.6047560	2.1147520
C	-1.9965640	-0.1186460	2.4504960
H	-2.3710180	0.5953490	3.1846150

(M)-exo-dithia[7]helicene, S_{1}.
1.225808

C -17398670 19233820
-0.9767960
C $\quad-1.8134600$
3.1438690
-0.2750750
H -2.7406260
3.7212290
-0.2489690
C $\quad-0.6619080$
3.6191450
0.3166380
$\begin{array}{llll}H & -0.6655760 & 4.5979080 & 0.8056760\end{array}$
C 0.5433240
2.8721260
0.3115480
$\begin{array}{llll}\text { C } & 1.7409630 & 3.4142910 & 0.8526200\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.7206950 & 4.4293600 & 1.2602840\end{array}$
$\begin{array}{llll}C & 2.9293310 & 2.7130400 & 0.8049420\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.8575460 & 3.1817640 & 1.1453590\end{array}$
$\begin{array}{llll}\text { C } & 2.9700620 & 1.3747630 & 0.3476240\end{array}$
$\begin{array}{llll}C & 4.1817600 & 0.6600700 & 0.2153040\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.1248100 & 1.1772940 & 0.4138480\end{array}$
C $\quad 4.1817570 \quad-0.6600600 \quad-0.2153260$
$\begin{array}{llll}\mathrm{H} & 5.1248060 & -1.1772810 & -0.4138850\end{array}$
$\begin{array}{llll}\text { C } & 2.9700600 & -1.3747600 & -0.3476350\end{array}$
$\begin{array}{llll}C & 2.9293370 & -2.7130350 & -0.8049500\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.8575530 & -3.1817620 & -1.1453650\end{array}$

C	1.7409650	-3.4142900	-0.8526150
H	1.7207040	-4.4293630	-1.2602720
C	0.5433310	-2.8721240	-0.3115430
C	-0.6618990	-3.6191450	-0.3166320
H	-0.6655680	-4.5979040	-0.8056800
C	-1.8134560	-3.1438710	0.2750830
H	-2.7406240	-3.7212310	0.2489630
C	-1.7398580	-1.9233880	0.9768060
S	-3.0097370	-1.2257940	1.9294050
C	-1.9658280	0.0558630	2.4508690
H	-2.3351360	0.8070030	3.1495650
C	-0.7209780	-0.0241070	1.9127640
H	0.0727680	0.6812100	2.1543770
C	-0.5648050	-1.1438710	1.0211670
C	0.5726380	-1.5459260	0.2497750
C	1.7156690	-0.7175920	-0.0110490
C	1.7156760	0.7175990	0.0110430
C	0.5726370	1.5459430	-0.2497770
C	-0.5648160	1.1438690	-1.0211660
C	-0.7209960	0.0240910	-1.9127460
H	0.0727370	-0.6812400	-2.1543510
C	-1.9658640	-0.0559050	-2.4508100
H	-2.3351670	-0.8070690	-3.1494810

Section S3: Additional references.

[^0]
[^0]: ${ }^{1}$ Wender, P.A.; Lesser, A.B.; Sirois, L.E. Angew. Chem. 2012, 124, 2790-2794.
 ${ }^{2}$ Dipold, J.; Batista, R.J.M.B.; Fonseca, R.D.; Silva, D.L.; Moura, G.L.C.; dos Anjos, J.V.; Simas, A.M.; De Boni, L.; Mendonca, C.R. Chem. Phys. Lett. 2016, 661, 143-150.
 ${ }^{3}$ Lang, J.; Jie, L.; Yanjun, S.; Xiaosong, S. CN113754629A, 2021
 ${ }^{4}$ Lee, J.-E.; Kwon, J.; Yun, J. Chem. Commun. 2008, 733-734
 ${ }^{5}$ Molloy, J.J.; Seath, C.P.; West, M.J.; McLaughlin, C.; Fazakerley, N.J.; Kennedy, A.R.; Nelson, D.J.; Watson, A.J.B. J. Am. Chem. Soc. 2018, 140, 1, 126-130.
 ${ }^{6}$ G. A. Molander and A. R. Brawn, J. Org. Chem., 2006, 71, 9681-9686.
 ${ }^{7}$ Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51-57.
 ${ }^{8}$ Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3295-3305.
 ${ }^{9}$ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; WilliamsYoung, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Revision c. 01.
 ${ }^{10}$ Santoro, F.; Lami, A.; Improta, R.; Bloino, J.; Barone, V. J. Chem. Phys. 2008, 128 (22), 224311-224317.
 ${ }^{11}$ Srebro-Hooper, M.; Autschbach, J. Annu. Rev. Phys. Chem. 2017, 68, 399-420.
 ${ }^{12}$ Autschbach, J.; Nitsch-Velasquez, L.; Rudolph, M. Top. Curr. Chem. 2011, 298, 1-98.
 ${ }^{13}$ Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41 (2), 157-167.
 ${ }^{14}$ Peverati, R.; Truhlar, D. G. J. Phys. Chem. Lett. 2011, 2, 2810-2817.
 ${ }^{15}$ Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615.
 ${ }^{16}$ Henderson, T. M.; Izmaylov, A. F.; Scalmani, G.; Scuseria, G. E. J. Chem. Phys. 2009, 131 (4), 044108.
 ${ }^{17}$ Migliore, A. J. Chem. Theory Comput. 2019, 15 (9), 4915-4923.
 ${ }^{18}$ Liu, Y.; Cerezo, J.; Mazzeo, G.; Lin, N.; Zhao, X.; Longhi, G.; Abbate, S.; Santoro, F. J. Chem. Theory Comput. 2016, 12 (6), 2799-2819.

