Supporting Information

Partial Decarboxylation of Hafnium Oxide Clusters for High Resolution Lithographic Applications

Pin-Chia Liao^a, Po-Hsiung Cheng,^b Yu-Fang Tseng,^a Ting-An Shih,^a Ting-An Lin^a.

Tsi-Sheng Gau* b,c Burn-Jeng Lin*, b,c Po-Wen Chiu*b,c and Jui-Hsiung Liu*

KEYWORDS: Hexameric Hf oxide clusters, partially decarboxylation, photoresist, EUV lithography, line/space/edge character.

^aFrontier Research Center for Matter Science and Technology, Department of Chemistry,

^bTSMC-NTHU Joint Research Center

^cDepartment of Electric Engineering, National Tsing-Hua University, Hsinchu, Taiwan, ROC, email: rsliu@mx.nthu.edu.tw

Content:

1.	Representative Synthetic procedures	1
2.	ESI-Mass and thermogravimetric analysis datas	- 5
3.	SEM images E-beam lithography patterns	7
4.	SEM images EUV lithography patterns	. 9
5.	X-ray crystallographic structures and data	13
6.	Spectral data of key compounds	15
7.	¹ H and ¹³ C NMR of key compounds	17

1. Representative synthetic procedures

Unless otherwise noted, all reactions were carried out under nitrogen atmosphere inoven-dried glassware using standard syringe, cannula and septa apparatus. Dichloromethane and toluene were dried over CaH₂ and distilled. Reagents were purchased from commercial sources and used without purification, unless otherwise stated. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 MHz and Bruker 500 MHz spectrometers using chloroform-d (CDCl₃) as the internal standard. The ESI-Mass were perdormed using JEOL JMS-700. The EA analysis was performed by elementar vario EL cube. The TGA were performed using Mettler-Toledo 2-HT. FTIR Spectroscopy of power samples was in a Bruker Vertex 80v spectrometer. The AFM measurements were using SEIKO SPA-300HV. Electron-beam lithography was done by utilizing Elionix ELS-7800 with an accelerating voltage of 80 kV and a beam current of 200 pA. The EUV-IL system at the Swiss Light Sources (SLS), Paul Scherrer Institute, utilizes 13.5 nm EUV light. HRXPS measurements were performed in a ULVAC-PHI Quantera II, with a monochromatic Al Ka source (energy of 1486.7 eV).

2. ESI-Mass, TGA data and AFM of species 1-OH

We attempted to conform the structure of partially decarboxylated sample **1-OH** with ESI-mass to confirm the formula $Hf_6O_4(OH)_6(i-C_4H_9CO_2)_{10}$. We observed clusters of peaks due to six hafnium isotopes together with $[M+H]^+$ and $[M+2H]^{+2}$. We selected two major Hf isotopes ¹⁷⁸Hf (27%) and ¹⁸⁰Hf (35%), we were able to find seven fragments corresponding to $[M+H]^+$ which the exact mass between calculated and experimental data are well matched; see Figure S1. These are additional peaks that might be due to additional fragments of other Hf isotopes or different $[M+nH]^{+n}$ as 6-Hf clusters sometimes bear two or more protons because of the large sizes and more basic sites such as Hf-OH.

Apart from the fragments of $[M+H]^+$, and we are also able to find seven fragments corresponding to $[M+Na]^+$; the exact mass are calculated by two main Hf isotopes ¹⁷⁸Hf (27%) and ¹⁸⁰Hf (35%). As shown in Figure S-2, the calculated and the experimental values are well compatible. Additional peaks in Figure S2 is probably due to fragments of other Hf isotopes, or to different $[M+Na+H]^{+2}$ as 6-Hf clusters sometimes bear two or more protons because of the large sizes and more basic sites such as Hf-OH.

Data:2PC028 LiOH MeOH Comment: Description: Ionization Mode:ESI+ History:Average(MS[1] 0.18..0.50) Acquired:5/18/2022 12:01:52 PM Operator:AccuTOF m/z Calibration File:20220518 TFANa_... Created:6/8/2022 3:51:56 PM Created by:AccuTOF

Charge number:1 Tolerance:300.00[ppm], 250.00 .. 250.... Unsaturation Number:-100.0 .. 200.0 (... Element:¹²C:50 .. 50, ¹H:97 .. 97, ¹⁷⁸Hf:0 .. 6, ¹⁸⁰Hf:1 .. 6, ²³Na:0 .. 1, ¹⁶O:30 .. 30

Mass	Intensity	Calc. Mass	Mass Difference [mDa]	Mass Difference [ppm]	Possible Formula
2245.27792	2184.53				
2247.28242	2018.18	2247.27150	10.92	4.86	12C ₅₀ 1H ₉₇ 178Hf ₅ 180Hf ₁ 16O ₃₀
2249.29040	1396.37	2249.27435	16.05	7.13	12C ₅₀ 1H ₉₇ 178Hf ₄ 180Hf ₂ 16O ₃₀
2251.24141	1005.19	2251.27720	-35.80	-15.90	12C501H97178Hf3180Hf316O30
2253.22847	751.38	2253.28005	-51.59	-22.89	12C ₅₀ 1H ₉₇ 178Hf ₂ 180Hf ₄ 16O ₃₀
2255.24941	646.32	2255.28291	-33.49	-14.85	12C501H97178Hf1180Hf516O30
2257.31199	604.00	2257.28576	26.24	11.62	¹² C ₅₀ ¹ H ₉₇ ¹⁸⁰ Hf ₆ ¹⁶ O ₃₀

Figure S1. ESI-Mass of species 1-OH [M+H]⁺.

Data:2PC028 LiOH MeOH Comment: Description: Ionization Mode:ESI+ History:Average(MS[1] 0.18..0.50) Acquired:5/18/2022 12:01:52 PM Operator:AccuTOF m/z Calibration File:20220518 TFANa_... Created:6/8/2022 3:49:46 PM Created by:AccuTOF

Charge number:1 Tolerance:300.00[ppm], 250.00 .. 250.... Unsaturation Number:-100.0 .. 200.0 (... Element:¹²C:50 .. 50, ¹H:96 .. 96, ¹⁷⁸Hf:0 .. 6, ¹⁸⁰Hf:1 .. 6, ²³Na:1 .. 1, ¹⁶O:30 .. 30

Mass	Intensity	Calc. Mass	Mass Difference [mDa]	Mass Difference [ppm]	Possible Formula
2267.28408	409.52				
2269.24046	221.47	2269.25345	-12.99	-5.72	12C501H96178Hf5180Hf123Na116O30
2271.22019	384.97	2271.25630	-36.11	-15.90	¹² C ₅₀ ¹ H ₉₆ ¹⁷⁸ Hf ₄ ¹⁸⁰ Hf ₂ ²³ Na ₁ ¹⁶ O ₃₀
2273.25093	259.39	2273.25915	-8.22	-3.62	¹² C ₅₀ ¹ H ₉₆ ¹⁷⁸ Hf ₃ ¹⁸⁰ Hf ₃ ²³ Na ₁ ¹⁶ O ₃₀
2275.25915	224.25	2275.26200	-2.85	-1.25	12C501H96178Hf2180Hf423Na116O30
2277.24485	277.36	2277.26485	-20.00	-8.78	12C501H96178Hf1180Hf523Na116O30
2279.27785	287.47	2279.26770	10.15	4.45	12C501H96180Hf623Na116O30

Figure S2. ESI-Mass of species 1-OH [M+Na]⁺.

We employed TGA to see their calibration with formula. In the case of acid-containing 1, we obtained residual weight ca. 50%; the theoretical value of HfO_2 formation is 46% based on the formula from the x-ray diffraction; the discrepancy is 4%. For partially decarboxylated **1-OH**, the residual weight is 58% whereas the theoretical value is found to be 56% based on our proposed formula $Hf_6O_4(OH)_6(i-C_4H_9CO_2)_{10}$.

Fig. S3. TGA of species 1 and 1-OH

Fig. S4. AFM of species 1-OH at different days after soft backing

Acquired:5/18/2022 12:30:41 PM

Operator:AccuTOF

_						
	Mass	Intensity	Calc. Mass	Mass Difference [mDa]	Mass Difference [ppm]	Possible Formula
Г	2189.21230	1020.22				
	2191.21754	322.37	2191.20890	8.64	3.94	¹² C ₄₆ ¹ H ₈₉ ¹⁷⁸ Hf ₅ ¹⁸⁰ Hf ₁ ¹⁶ O ₃₀
Γ	2193.14547	862.15	2193.21175	-66.29	-30.22	¹² C ₄₆ ¹ H ₈₉ ¹⁷⁸ Hf ₄ ¹⁸⁰ Hf ₂ ¹⁶ O ₃₀
Γ	2195.24768	787.31	2195.21460	33.08	15.07	¹² C ₄₆ ¹ H ₈₉ ¹⁷⁸ Hf ₃ ¹⁸⁰ Hf ₃ ¹⁶ O ₃₀
Г	2197.21042	533.32	2197.21745	-7.03	-3.20	12C461H89178Hf2180Hf416O30
	2199.22067	369.45	2199.22031	0.37	0.17	¹² C ₄₆ ¹ H ₈₉ ¹⁷⁸ Hf ₁ ¹⁸⁰ Hf ₅ ¹⁶ O ₃₀
С	2201.20209	215.29	2201.22316	-21.07	-9.57	¹² C ₄₆ ¹ H ₈₉ ¹⁸⁰ Hf ₆ ¹⁶ O ₃₀

Figure S5. ESI-Mass of species 2-OH [M+H]⁺.

2. ESI-Mass and TGA data of species 2-OH

Data:2PC023 LiOH ACN

Comment:

Data:2PC023 LiOH ACN Comment: Description: Ionization Mode:ESI+ History:Average(MS[1] 0.20..0.29) Acquired:5/18/2022 12:30:41 PM Operator:AccuTOF m/z Calibration File:20220518 TFANa_... Created:6/7/2022 4:53:31 PM Created by:

Charge number:1 Tolerance:300.00[ppm], 250.00 .. 250.... Unsaturation Number:-100.0 .. 200.0 (... Element:¹²C:46 .. 46, ¹H:88 .. 88, ¹⁷⁸Hf:0 .. 6, ¹⁸⁰Hf:1 .. 6, ²³Na:1 .. 1, ¹⁶O:30 .. 30

Mass	Intensity	Calc. Mass	Mass Difference [mDa]	Mass Difference [ppm]	Possible Formula
2211.22533	435.21				
2213.19557	510.75	2213.19085	4.72	2.13	12C461H88178Hf5180Hf123Na116O30
2215.18849	108.95	2215.19370	-5.21	-2.35	¹² C ₄₆ ¹ H ₈₈ ¹⁷⁸ Hf ₄ ¹⁸⁰ Hf ₂ ²³ Na ₁ ¹⁶ O ₃₀
2217.21910	575.67	2217.19655	22.56	10.17	¹² C ₄₆ ¹ H ₈₈ ¹⁷⁸ Hf ₃ ¹⁸⁰ Hf ₃ ²³ Na ₁ ¹⁶ O ₃₀
2219.19506	419.93	2219.19940	-4.33	-1.95	12C461H88178Hf2180Hf423Na116O30
2221.20088	1113.12	2221.20225	-1.37	-0.62	12C461H88178Hf1180Hf523Na116O30
2223.23436	577.78	2223.20510	29.26	13.16	¹² C ₄₆ ¹ H ₈₈ ¹⁸⁰ Hf ₆ ²³ Na ₁ ¹⁶ O ₃₀

Figure S6. ESI-Mass of species 2-OH [M+Na]⁺.

Figure S7. TGA of species 2 and 2-OH.

Design HP Dose	Design HP=50 nm	Design HP=40 nm	Design HP=30 nm	Design HP=20 nm
1440 μC/cm ²	HP = 53 nm	HP = 40 nm	HP = 33 nm	
1760 µC/cm²	HP = 50 nm	HP = 42 nm 	HP = 31 nm	HP = 23 nm
2080 µC/cm ²	HP = 51 nm	HP = 39 nm	HP = 31 nm (14 m) 3 mm 4 mm 7 mm 7 mm 10 mm 10 mm 10 mm 10 mm 10 mm	HP = 24 nm (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

3. SEM image of E-beam lithography patterns

Figure S8. SEM images of E-beam lithography patterns on 1. Process parameter: 1.5 wt%, THK= 24 nm, Developer: 2-Heptanone : Hexane = 1 : 1.60 s, PEB= 80° C 60 s

Figure S9. SEM images of E-beam lithography patterns on 1-(OH). Process parameter: 2.0 wt%, THK= 23 nm, Developer: 2-Heptanone : Hexane = 1 : 1 80 s, PEB= 80°C, 60s

Design HP Dose	Design HP=50 nm	Design HP=40 nm	Design HP=30 nm	Design HP=20 nm
1440 μC/cm ²	HP = 53 nm	HP = 42 nm	HP = 31 nm	HP = 22 nm
1760 µC/ст ²	HP = 49 nm	HP = 40 nm $\frac{1}{7}$	HP = 30 nm 	87 50/13/mr 108
2080 μC/cm ²	HP = 48 nm	HP = 42 nm	HP = 30 nm $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$	

Figure S10. SEM images of E-beam lithography patterns on 2-(OH). Process parameter: 2.0 wt%, THK= 24 nm, Developer: 2-Heptanone : Hexane = 1 : 1 60 s, PEB= 80°C 60 s

Figure S11. E-beam contrast curve of compound Zr 1-(OH) Intial thickness 30 nm..

Figure S12. SEM images of E-beam lithography patterns on **Zr 1-(OH)**. Process parameter: 2.0 wt%, THK= 17 nm, Developer: 2-Heptanone : Hexane = 1 : 1 60 s, PEB= 80°C 60 s

Design HP= 50 nm	Design HP= 35 nm	Design HP= 25 nm
HP=51 nm (178 $\frac{1}{mJ}$ /cm ²)	HP=36 nm (163 $m_{T}^{\frac{1}{2}}$ J/cm ²)	HP=25 nm (148 $m_{T}^{1/cm^{2}}$)
107m T 42 thur 12 thur 15 0kV 3.2mm x100k (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	167 5.0kV 9.2mm x100k	1.51 5 0kV 3 2min x100k
HP=51 nm (188 $\frac{1}{\overline{m}}$ J/cm ²) $\frac{1}{\overline{\tau}}$	HP=36 nm (173 $m_{\frac{1}{2}}^{\frac{1}{2}} cm^{2}$)	HP=25 nm (156 $\frac{1}{mJ/cm^2}$)
101mr Kollmin T - Koller T - Soler T - Solev 3. Imm x100k	کرہ ہے۔ ۲ 197 5 0kv/3 fmm x 100k	- 23 Ann - 12 Ann - 12 Ann - 157 5 DAV 3 Traim x 100k
HP=51 nm (191 mJ/cm ²) $\downarrow_{\text{trans}}$ $\downarrow_{\text{trans}}$ $\downarrow_{\text{trans}}$ $\downarrow_{\text{trans}}$ $\downarrow_{\text{trans}}$ $\downarrow_{\text{trans}}$	HP=35 nm (182 mJ/cm ²) $\frac{1}{7}$ $\frac{1}{1}$	HP=25 nm (165 $\frac{4}{\text{mJ}/\text{cm}^2}$) $\frac{1}{\frac{1}{7}}$
IST 5 0kV 3 1mm x100k 500mm	187 5.04 V 3. Imm x100k 500m	IST 5.0kV 3.1mm ×100k 500km
HP=50 nm (209 mJ/cm ²)	HP=35 nm (191 mJ/cm ²) T <u>J</u> _{10xx} T <u>J</u> _{10xx} <u>J</u> _{10xx} <u>T</u> <u>J</u> _{10xxx} <u>T</u> <u>J</u> _{10xxx} <u>T</u> <u>T</u> <u>J</u> _{10xxx} <u>T</u> <u>T</u> <u>J</u> _{10xxx} <u>T</u> <u>T</u> <u>T</u> <u>T</u> <u>T</u> <u>T</u> <u>T</u> <u>T</u>	HP=26 nm (173 mJ/cm ²)
HP=51 nm (219 mJ/cm ²)	HP=36 nm (201 mJ/cm ²)	HP=25 nm (182 m ¹ J/cm ²)

4. SEM image of EUV lithography patterns

Figure S13. SEM images of EUV lithography patterns on 1-(OH) HP= 50, 35, 25 nm at different dose. Process parameter: 2.0 wt%, THK= 23 nm, Developer: 2-Heptanone : Hexane = 1 : 1 80 s, PEB= 80°C 60 s

Figure S14. SEM images of EUV lithography patterns on 1-(OH) HP= 22, 18,16 nm at different dose. Process parameter: 2.0 wt%, THK= 23 nm, Developer: 2-Heptanone : Hexane = 1 : 1 80 s, PEB= 80°C 60 s

Figure S15. SEM images of EUV lithography patterns on **2-(OH)** HP= 50, 35, 25 nm at different dose. Process parameter: 2.0 wt%, THK= 24 nm, Developer: 2-Heptanone : Hexane = 1 : 1 60 s, PEB= 80°C 60 s.

Figure S16. SEM images of EUV lithography patterns on 2-(OH) HP= 22, 18, 16 nm at different dose. Process parameter: 2.0 wt%, THK= 24 nm, Developer: 2-Heptanone : Hexane = 1 : 1 60 s, PEB= 80°C 60 s.

5. X-ray crystallographic structures and data.

5.1 X-ray structure of isobutyrate derivative 1':

Table S1.	Crystal data and structure refinement for	r mo_200723lt_0m_a.
Identificati	on code	mo_200723LT_0m_a
Empirical f	formula	C60 H108 Hf6 O39
Formula we	eight	2524.40
Temperatur	re	100(2) K
Wavelengt	h	0.71073 Å
Crystal sys	tem	Triclinic

Space group	P-1	
Unit cell dimensions	a = 13.6866(9) Å	= 90.858(2)°.
	b = 14.8851(9) Å	= 97.847(2)°.
	c = 22.7136(14) Å	= 104.937(2)°.
Volume	4423.0(5) Å ³	
Z	2	
Density (calculated)	1.895 Mg/m ³	
Absorption coefficient	7.091 mm ⁻¹	
F(000)	2424	
Crystal size	0.15 x 0.15 x 0.14 mm ³	
Theta range for data collection	0.906 to 26.526°.	
Index ranges	-16<=h<=17, -18<=k<=18, -28<	=l<=28
Reflections collected	153604	
Independent reflections	18291 [R(int) = 0.0520]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalents	6
Max. and min. transmission	0.7454 and 0.6769	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	18291 / 137 / 1036	
Goodness-of-fit on F ²	1.090	
Final R indices [I>2sigma(I)]	R1 = 0.0563, wR2 = 0.1338	
R indices (all data)	R1 = 0.0978, wR2 = 0.1739	
Extinction coefficient	n/a	
Largest diff. peak and hole	4.917 and -3.842 e.Å $^{\rm -3}$	

6. Spectral data of key compounds.

6.1 Spectral data for partially decarboxylated 6-Hafnium Cluster with 2-methylbutanoic acid ligand 1-(OH).

White solid (34%); ¹H NMR (400 MHz, CDCl₃): δ 2.13 (s, 10H), 1.66 ~ 1.33 (m, 20H), 1.03 (s, 30H), 0.85 (s, 30H); ¹³C NMR (125 MHz, CDCl₃): δ 182.4, 42.8, 42.2, 26.6, 16.1, 11.9; EA Anal. Calcd. for C₅₀H₉₆O₃₀Hf₆: C: 26.71%; H: 4.30%, found: C: 26.50%; H: 4.36%.

6.2 Spectral data for 6-Hafnium Cluster with 2-methylbutanoic acid and isobutyric acid ligand 2.

White solid (90%); ¹H NMR (400 MHz, CDCl₃): δ 5.22 (s, 2H), 2.40 (s, 6H), 2.22-2.12 (m, 9H), 1.65-1.40 (m, 18H), 1.05 (s, 63H), 0.87 (s, 27H); ¹³C NMR (125 MHz, CDCl₃): δ 182.4, 42.8, 35.9, 26.6, 18.9, 16.1, 11.8; HRMS (ESI+, m/z) Calcd. for C₅₄H₁₀₃O₃₃¹⁸⁰Hf₆ [M+H]⁺: 2359.32, found: 2359.27 ; EA Anal. Calcd. for C₆₉H₁₃₂O₃₉Hf₆: C: 31.19%, H: 5.01%, found: C: 30.86%, H: 4.86%.

6.3 Spectral data for partially decarboxylated 6-Hafnium Cluster with 2-methylbutanoic acid and isobutyric acid ligand 2-(OH).

White solid (30%); ¹H NMR (400 MHz, CDCl₃): δ 2.15 (s, 4H), 2.07 (s, 6H), 1.64-1.24 (m, 12H), 1.05 (s, 42H), 0.85 (s, 18H); ¹³C NMR (125 MHz, CDCl₃): δ 182.4, 42.8, 36.0, 35.5, 26.6, 19.0, 16.2, 11.9. EA Anal. Calcd. for C₄₆H₈₈O₃₀Hf₆: C: 25.20%, H: 4.05%, found: C: 25.17%, H: 4.36%.

6.4 Spectral data for partially decarboxylated 12-Zirconium Cluster with 2-methylbutanoic acid ligand Zr-1-OH.

White solid; ¹H NMR (400 MHz, CDCl3): $\delta 2.13(s, 18H)$, 1.63(s, 18H), 1.32(s, 18H), 1.02,(d, J = 5.6 Hz, 54H), 0.84(s, 54H); ¹³C NMR (100 MHz, CDCl3): $\delta 182.6$, 42.6, 26.7, 16.2, 12.0,; HRMS(ESI, m/z) Calcd. for C₉₀H₁₇₇O₅₈Zr₁₂ [M+H]+ : 3264.95, found: 3264.92; EA Calc. for C₉₀H₁₇₇O₅₈Zr₁₂: C: 32.95%, H: 5.41%, found: C: 33.64%, H: 5.62%.

7. ¹H and ¹³C NMR of key compounds

