Electronic Supplementary Information

Insight into through-space conjugation in rotation-restricted thermally activated delayed fluorescence compounds

Kuofei Li, Yuannan Chen, Bing Yao, Kunkun Dou, Tao Wang, Hao Deng, Hongmei Zhan,* Zhiyuan Xie, Yanxiang Cheng

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China).

Content

Synthesis:	2
Electrochemical properties	5
Thermal properties	5
Theoretical calculations	6
Photophysical properties	7
RMSD calculations	10
EL characteristics	10
NMR spectra	20
References	

Synthesis:

All chemicals and reagents were used as received from commercial sources without further purification. Solvents for chemical synthesis were purified according to the standard procedures. 2-(4-Bromophenyl)-4,6-diphenyl-1,3,5-triazine,^[1] (4-(bis(4-methoxyphenyl)amino)phenyl)boronic acid,^[2] 2-chloro-4,6-dimethoxy-1,3,5-triazine,^[3] 1-bromo-3,6-di-tert-butyl-9H-carbazole ^[4] were prepared according to references. 1,8-Dibromo-3,6-di(tert-butyl)-9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)carbazole was synthesized according to our previous work.^[5] 4-(Bis(4-(tert-butyl)phenyl)amino)phenylboronic acid was purchased from Soochiral Chemical Science & Technology. Co., Ltd in Suzhou.

Scheme S1 Synthetic routes of MPAPTC, BPAMTC, mBPAPTC and mBPAMTC.

MPAPTC: 3,6-di(*tert*-butyl)-1,8-di(4-(bis(4-methoxyphenyl)amino)phenyl)-9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl) carbazole

A mixture of 1,8-dibromo-3,6-di(tert-butyl)-9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)carbazole (0.74 g, 1.0 (4-(bis(4-methoxyphenyl)amino)phenyl)boronic acid 3.0 mmol), (1.1 g, mmol), tris(dibenzylideneacetone)dipalladium (0.018 g, 0.020 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.033 g, 0.080 mmol) and K₃PO₄ (1.1 g, 4.0 mmol) were dissolved in a mixture of THF (10 mL) and water (2 mL) under an argon atmosphere. The mixture was heated to 80 °C and stirred for 24 h. After cooled to room temperature, the mixture was diluted with DCM, washed with water and brine, and dried over anhydrous Na₂SO₄. The solution was filtered and then concentrated in vacuo. The crude product was purified by column chromatography (silica, PE: DCM = 4:1) to get yellow solid. Yield: 0.75 g, 63%. ¹H NMR (500 MHz, THF-d₈) δ 8.93 (dt, J = 7.0, 1.5 Hz, 4H), 8.37 (d, J = 8.5 Hz, 2H), 8.26 (d, J = 2.0 Hz, 2H), 7.71 – 7.66 (m, 2H), 7.64 (t, J = 7.2 Hz, 4H), 7.28 (d, J = 2.0 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H), 6.71 (d, J = 8.9 Hz, 8H), 6.67 (d, J = 8.5 Hz, 4H), 6.45 (d, J = 8.9 Hz, 8H), 6.31 (d, J = 8.5 Hz, 4H), 3.39 (s, 12H), 1.48 (s, 18H). 13 C NMR (126 MHz, THF- d_8) δ 171.82 , 171.57 , 156.19 , 146.94 , 144.76 , 142.17 , 140.16 , 137.20 , 136.21 , 133.09 , 132.73 , 130.98 , 130.00 , 129.60 , 129.19 , 128.70 , 127.74 , 127.10 , 126.98 , 126.55 , 124.76 , 116.75 , 114.59 , 114.22 , 54.26 , 34.26 , 31.37. MALDI-TOF (m/z) calcd

for $C_{81}H_{72}N_6O_4$ [M]+ : 1192.5615; Found: 1192.5590. Anal. calcd for $C_{81}H_{72}N_6O_4$ (%) : C, 81.52; H, 6.08; N, 7.04; O, 5.36. Found: C, 81.44; H, 6.13; N, 6.96.

Cl-MT: 2-(4-chlorophenyl)-4,6-dimethoxy-1,3,5-triazine

2-Chloro-4,6-dimethoxy-1,3,5-triazine (1.4 g, 8.0 mmol), (4-chlorophenyl)boronic acid (1.4 g, 8.8 mmol), tetrakis(triphenylphosphine)palladium (0.28 g, 0.24 mmol) and potassium carbonate (2.2 g, 16 mmol) were deposited in a round-bottom flask. 40 mL THF and 8 mL H₂O were added after vacuumed and nitrogen aerated for three times. The mixture was heated to 80 °C and stirred for 24 h. The reaction was cooled down to room temperature and then diluted with DCM, washed with water and brine, and dried over anhydrous Na₂SO₄. The organic phase was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography to get white solid. Yield: 1.06 g, 53%. ¹H NMR (500 MHz, Chloroform-d) δ 8.44 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.6 Hz, 2H), 4.13 (s, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 173.95 , 172.90 , 139.16 , 133.51 , 130.34 , 128.81 , 55.30. MALDI-TOF (m/z) calcd for C₁₁H₁₀N₃O₂Cl [M]+ : 251.0462; Found: 251.0469.

MTC: 3,6-di-tert-butyl-9-(4-(4,6-dimethoxy-1,3,5-triazin-2-yl)phenyl)-9H-carbazole

A mixture of 3,6-di(*tert*-butyl)carbazole (0.92 g, 3.3 mmol), 2-(4-chlorophenyl)-4,6-dimethoxy-1,3,5-triazine (0.76 g, 3.0 mmol), tris(dibenzylideneacetone)dipalladium (0.055 g, 0.060 mmol), tri(tert-butyl)phosphine tetrafluoroborate (0.070 g, 0.24 mmol) and cesium carbonate (2.0 g, 6.0 mmol) were vacuumed and nitrogen aerated for three times. Then 25 mL degassed toluene was added and the temperature was set to 120 °C. The system was cooled down to room temperature after 24 h, diluted with DCM, washed with water and brine, and dried over anhydrous Na₂SO₄. The organic phase was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography to get white solid. Yield: 1.20 g, 81%. ¹H NMR (500 MHz, Chloroform-d) δ 8.72 (d, *J* = 8.6 Hz, 2H), 8.14 (dd, *J* = 1.8, 0.9 Hz, 2H), 7.72 (d, *J* = 8.6 Hz, 2H), 7.53 – 7.42 (m, 4H), 4.17 (s, 6H), 1.47 (s, 18H). ¹³C NMR (126 MHz, Chloroform-d) δ 174.16 , 172.94 , 143.48 , 142.49 , 138.61 , 132.98 , 130.63 , 125.94 , 123.81 (d, *J* = 2.8 Hz), 116.35 , 109.36 , 55.31 , 34.76 , 31.98. MALDI-TOF (m/z) calcd for C₃₁H₃₄N₄O₂ [M]+ : 494.2682, Found: 494.2696.

Br-MTC: 1,8-dibromo-3,6-di-tert-butyl-9-(4-(4,6-dimethoxy-1,3,5-triazin-2-yl)phenyl)-9H-carbazole

MTC (0.49 g, 1.0 mmol), NBS (0.48 g, 2.7 mmol), DMF (5 mL) and THF (5 mL) were added into a 50 mL flask. The mixture was stirred at 80 °C in the dark for 12 h. After cooled to room temperature, the mixture was poured into 100 mL water, and extracted with DCM three times. The organic layer was washed with water and brine, and dried over anhydrous Na₂SO₄. The solution was filtered and concentrated in vacuo. The crude product was purified by column chromatography to give white solid. Yield: 0.39 g, 60%. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.60 (d, *J* = 8.5 Hz, 2H), 8.05 (d, *J* = 1.7 Hz, 2H), 7.64 – 7.55 (m, 4H), 4.17 (s, 6H), 1.44 (s, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.34 , 172.99 , 144.96 , 142.70 , 136.93 , 135.85 , 132.82 , 130.16 , 128.56 , 125.63 , 115.46 , 103.79 , 55.34 , 34.68 , 31.76. MALDI-TOF (m/z) calcd for C₃₁H₃₂N₄O₂Br₂ [M]+ : 650.0892, Found: 650.0914.

BPAMTC: 3,6-di(*tert*-butyl)-1,8-di(4-(bis(4-(*tert*-butyl)phenyl)amino)phenyl)-9-(4-(4,6-dimethoxy-1,3,5-triazin-2-yl)phenyl) carbazole

BPAMTC was prepared from Br-MTC (0.39 g, 0.60 mmol) and 4-(bis(4-(*tert*-butyl)phenyl)amino)phenylboronic acid (0.60 g, 1.5 mmol) by the same procedure of MPAPTC. Yellow-green solid. Yield: 0.58 g, 81%. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.17 (s, 2H), 8.06 – 8.02 (m, 2H), 7.28 (d, *J* = 2.0 Hz, 2H), 7.13 (d, *J* = 8.2 Hz, 8H), 6.92 – 6.76 (m, 10H), 6.72 (d, *J* = 8.0 Hz, 4H), 6.55 (s, 4H), 4.06 (s, 6H), 1.49 (s, 18H), 1.29 (s, 36H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.11, 172.67, 145.44, 144.50, 142.53, 137.31, 132.09, 129.58, 127.74, 127.35, 126.24, 125.58, 124.46, 124.18, 119.76, 114.56, 54.93, 34.44, 33.98, 31.77, 31.18. MALDI-TOF (m/z) calcd for

 $C_{83}H_{92}N_6O_2$ [M]+ : 1204.7282, Found: 1204.7329. Anal. calcd for $C_{83}H_{92}N_6O_2$ (%) : C, 82.68; H, 7.69; N, 6.97; O, 2.65. Found: C, 82.51; H, 7.56; N, 6.84.

BPAC: 4-(tert-butyl)-N-(4-(tert-butyl)phenyl)-N-(4-(3,6-di-tert-butyl-9H-carbazol-1-yl)phenyl)aniline

1-Bromo-3,6-di-*tert*-butyl-9*H*-carbazole (1.4 g, 4.0 mmol), 4-(bis(4-(*tert*-butyl)phenyl)amino)phenyl-boronic acid (1.7 g, 4.2 mmol), tris(dibenzylideneacetone)dipalladium (0.073 g, 0.080 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.13 g, 0.32 mmol) and K₃PO₄ (1.1 g, 8.0 mmol) were deposited in a round-bottom flask. 40 mL THF and 8 mL H₂O were added after vacuumed and nitrogen aerated for three times. The mixture was heated to 80 °C and stirred for 24 h. The reaction was cooled down to room temperature and then diluted with DCM, washed with water and brine, and dried over anhydrous Na₂SO₄. The organic phase was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography to get white solid. Yield: 2.21 g, 87%. ¹H NMR (400 MHz, Benzene-*d*₆) δ 8.34 (d, *J* = 1.9 Hz, 1H), 8.30 (d, *J* = 1.8 Hz, 1H), 7.67 (d, *J* = 1.8 Hz, 1H), 7.62 (s, 1H), 7.52 – 7.43 (m, 3H), 7.35 – 7.24 (m, 10H), 6.99 (dd, *J* = 8.5, 0.6 Hz, 1H), 1.46 (s, 9H), 1.44 (s, 9H), 1.25 (s, 18H). ¹³C NMR (101 MHz, Benzene-*d*₆) δ 148.13, 146.24, 145.92, 143.01, 142.38, 138.73, 136.66, 133.74, 129.63, 126.73, 124.98, 124.89, 124.64, 124.34, 124.05, 123.97, 123.87, 116.70, 115.60, 110.84, 34.91, 34.84, 34.40, 32.25, 31.58, 27.26. MALDI-TOF (m/z) calcd for C₄₆H₅₄N₂ [M]+ : 634.4287; Found: 634.4306.

mBPAPTC: 3,6-di(*tert*-butyl)-1-(4-(bis(4-(*tert*-butyl)phenyl)amino)phenyl)-9-(4-(4,6-diphenyl-1,3,5-triazin-2yl)phenyl) carbazole

A mixture of BPAC (0.70 g, 1.1 mmol), 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (0.39 g, 1.0 mmol), tris(dibenzylideneacetone)dipalladium (0.018 g, 0.020 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxy- biphenyl (0.033 g, 0.080 mmol) and sodium tert-butoxide (0.19 g, 2.0 mmol) were vacuumed and nitrogen aerated for three times. Then 10 mL degassed toluene was added and the temperature was set to 120 °C. The system was cooled down to room temperature after 24 h, diluted with DCM, washed with water and brine, and dried over anhydrous Na₂SO₄. The organic phase was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography to get green solid. The product was then further purified with toluene / ethyl alcohol. Yield: 0.50 g, 53%. ¹H NMR (500 MHz, THF-*d*₈) δ 8.92 – 8.83 (m, 4H), 8.77 (d, *J* = 8.5 Hz, 2H), 8.25 (dd, *J* = 8.6, 1.9 Hz, 2H), 7.70 – 7.56 (m, 6H), 7.47 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.42 (d, *J* = 1.9 Hz, 1H), 7.35 (dd, *J* = 8.6, 4.7 Hz, 3H), 6.97 (d, *J* = 8.5 Hz, 2H), 6.94 (d, *J* = 8.6 Hz, 4H), 6.71 (d, *J* = 8.6 Hz, 4H), 6.58 (d, *J* = 8.5 Hz, 2H), 1.51 (s, 1H), 1.47 (s, 9H), 1.06 (s, 18H). ¹³C NMR (126 MHz, THF-*d*₈) δ 172.53 , 172.01 , 147.37 , 146.38 , 145.56 , 144.33 , 143.95 , 143.83 , 141.29 , 137.07 , 137.02 , 134.49 , 133.40 , 133.05 , 130.36 , 129.85 , 129.78 , 129.39 , 128.41 , 126.97 , 126.89 , 126.46 , 126.36 , 125.42 , 124.64 , 124.42 , 120.67 , 116.75 , 115.81 , 110.14 , 35.19 , 34.49 , 32.19 , 32.16 , 31.44 . MALDI-TOF (m/z) calcd for C₆₇H₆₇N₅ [M]+ : 941.5396; Found: 941.5356. Anal. calcd for C₆₇H₆₇N₅ (%) : C, 85.40; H, 7.17; N, 7.43. Found: C, 85.24; H, 7.21; N, 7.35.

mBPAMTC: 3,6-di(*tert*-butyl)-1-4-(bis(4-(*tert*-butyl)phenyl)amino)phenyl)-9-(4-(4,6-dimethoxy-1,3,5-triazin-2-yl)phenyl) carbazole

A mixture of BPAC (0.89 g, 1.4 mmol), MTCI (0.30 g, 1.2 mmol), tris(dibenzylideneacetone)dipalladium (0.022 g, 0.024 mmol), tri(tert-butyl)phosphine tetrafluoroborate (0.028 g, 0.096 mmol) and cesium carbonate (0.78 g, 2.4 mmol) were vacuumed and nitrogen aerated for three times. Then 25 mL degassed toluene was added and the temperature was set to 120 °C. The system was cooled down to room temperature after 24 h, diluted with DCM, washed with water and brine, and dried over anhydrous Na_2SO_4 . The organic phase was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography to get yellow-green solid. Yield: 0.71 g, 70%. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.42 (d, *J* = 8.6 Hz, 2H), 8.21 – 8.06 (m, 2H),

7.48 – 7.37 (m, 2H), 7.32 (d, J = 8.7 Hz, 1H), 7.22 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 55.6 Hz, 6H), 6.80 (s, 6H), 4.14 (s, 6H), 1.51 (s, 9H), 1.47 (s, 9H), 1.29 (s, 18H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 174.25 , 172.94 , 145.18 , 143.61 , 143.52 , 140.32 , 136.13 , 132.34 , 129.20 , 127.24 , 125.72 , 123.85 , 123.77 , 121.59 , 116.11 , 115.08 , 109.53 , 55.26 , 34.77 , 34.74 , 34.17 , 32.02 , 31.98 , 31.42 . C₅₇H₆₃N₅O₂ [M]+ : 849.4982; Found: 849.5005. Anal. calcd for C₅₇H₆₃N₅O₂ (%) : C, 80.53; H, 7.47; N, 8.24; O, 3.76. Found: C, 80.36; H, 7.33; N, 7.38.

Electrochemical properties

Fig. S1. Cyclic voltammogram of MPAPTC, BPAPTC, mBPAPTC, BPAMTC and mBPAMTC.

Fig. S2. a) TGA traces of BPAPTC, mBPAPTC, BPAMTC, mBPAMTC and MPAPTC recorded at a heating rate of 10 °C min⁻¹. b) DSC traces of BPAPTC, mBPAPTC, BPAMTC, mBPAMTC and MPAPTC recorded at a heating rate of 10 °C min⁻¹.

Table S1. Thermal stability properties of BA	PTC, mBPAPTC, BPA	AMTC, mBPAMTC ar	nd MPAPTC
--	-------------------	------------------	-----------

Compound	<i>T_d</i> (°C)	T _g (°C)
BPAPTC	462	
mBPAPTC	326	93
BPAMTC	376	93
mBPAMTC	355	94
МРАРТС	405	111

Theoretical calculations

Table S2. Computed transition energies (E_{VA}), oscillator strengths (f_{VA}) and configuration interaction description of S₁, T₁,T₂ and T₃ transitions using TD-BMK and 6-31G(d) basis set in toluene on the basis of S₀ geometries.

			S ₀ geometry in toluene							
	functional		E _{VA} (eV)	CI description	<i>C_j%</i>	$f_{\sf VA}$				
MPAPTC	ВМК	S_1	2.9291	HOMO→LUMO	89.13	0.0009				
				HOMO-1→LUMO	9.39					
		T_1	2.9097	HOMO-1→LUMO	83.83	0.0000				
		T_2	3.0092	HOMO→LUMO	74.85	0.0000				
		T_3	3.0498	HOMO→LUMO+1	86.05	0.0000				
BPAPTC	ВМК	S_1	2.9952	HOMO→LUMO	88.6	0.0024				
		T ₁	2.9666	HOMO→LUMO	78.3	0.0000				
		T_2	3.0660	HOMO-2→LUMO	37.0	0.0000				
		T_3	3.0877	HOMO-1→LUMO	81.9	0.0000				
mBPAPTC	ВМК	S_1	3.1971	HOMO→LUMO	97.31	0.0126				
		T_1	3.0783	HOMO-1→LUMO	37.29	0.0000				
		T_2	3.1691	HOMO→LUMO+2	30.40	0.0000				
		T_3	3.1978	HOMO→LUMO	82.98	0.0000				
BPAMTC	ВМК	S_1	3.2582	HOMO→LUMO	97.05	0.0076				
		T_1	3.1757	HOMO-2→LUMO	48.57	0.0000				
		T_2	3.1812	HOMO-3→LUMO+1	21.16	0.0000				
		T_3	3.2411	HOMO→LUMO	91.37	0.0000				
mBPAMTC	ВМК	S_1	3.3424	HOMO→LUMO	96.90	0.0160				
		T_1	3.1624	HOMO→LUMO+1	31.13	0.0000				
				HOMO-2→LUMO+3	21.85					
		T_2	3.2216	HOMO-1→LUMO	40.00	0.0000				
		T ₃	3.3348	HOMO→LUMO	83.10	0.0000				

Fig. S3. NTOs of the S_1 states for BPAPTC, mBPAPTC, BPAMTC, mBPAMTC and MPAPTC.

Fig. S4. Distributions of HOMO-1, HOMO and LUMO of MPAPTC.

Photophysical properties

Fig. S5. The UV-vis absorption spectra of (a) PTC, BPAPTC, mBPAPTC and MPAPTC; (b) MTC, BPAMTC and mBPAMTC measured in toluene with concentration of 10⁻⁵ M. Inset: UV-vis absorption spectra zoomed at around 412 nm and 388 nm, respectively.

Fig. S6. The PL spectra of (a) BPAPTC and (b) measured in different solvents with concentration of 10⁻⁵ M.

Fig. S7. The PL spectra of the five compounds measured in 20 wt% doped film with SimCP2 as the host.

Fig. S8. PL spectra of mBPAPTC doped in SimCP2 with different ratios.

Fig. S9. Transient decay spectra and exponential fitting curves of five molecules in toluene.

Fig. S10. Transient decay spectra and exponential fitting curves of the five compounds in doped film at 300 K.

Fig. S11. Temperature dependent PL transient decay spectra of (a) 20 wt% BPAMTC: SimCP2 film and (b) 20 wt% mBPAMTC: SimCP2 film.

compound	K _{PF}	K _{DF}	K _{ISC}	K _{RISC}	K _r	K _{nr}
	(10 ⁶ s ⁻¹)	(10 ⁵ s ⁻¹)	(10 ⁶ s ⁻¹)	(10 ⁵ s ⁻¹)	(10 ⁵ s ⁻¹)	(10 ⁵ s ⁻¹)
BPAPTC	2.05	1.59	1.66	8.43	4.65	0.52
mBPAPTC	3.48	2.16	2.55	8.11	9.78	1.09
BPAMTC	4.85	0.50	2.31	0.96	16.2	6.05
mBPAMTC	6.84	0.94	2.97	1.67	27.0	12.1
MPAPTC	2.05	1.58	1.35	4.64	3.53	4.49

Table S3. The rate constants of photophysical process of BAPTC, mBPAPTC, BPAMTC, mBPAMTC and MPAPTC.

RMSD calculations

Fig. S12. (a) The plots of K_{nr} s and RMSDs of the five compounds; (b)The optimized ground state (blue) and excited state (red) configuration of the studied molecules.

	BPAPTC	mBPAPTC	BPAMTC	mBPAMTC	MPAPTC
RMSD	0.1117	0.2447	0.4296	2.2288	0.3384

EL characteristics

Fig. S13. Device structure.

Fig. S14. EL performance of BPAPTC with different doped ratios; (a) EL spectra; (b) Current density-voltageluminance curves; (c) Luminous efficiency-luminance-power efficiency curves; (d) EQE-luminance curves.

		V _{on} [V]	М	ax perf	ormance	e	Device performance at 1000/5000/10000 cd m ⁻²			
E Device [n	EL [nm]		L [cd m ⁻ 2]	LE [cd A ⁻¹]	PE [lm W ⁻¹]	EQE [%]	V _d [V]	LE [cd A ⁻¹]	PE [lm W ⁻¹]	EQE [%]
10 wt%	520	3.1	33804	59.7	52.3	21.2	5.6/6.9/7.8	44.6/30.4/22.3	25.0/13.6/ 9.3	15.6/10.6/ 7.9
20 wt%	520	2.8	38481	64.5	63.6	22.8	3.9/4.7/5.4	58.1/43.6/32.7	46.0/28.3/ 19.4	20.4/15.3/ 11.6
30 wt%	520	2.7	30808	64.8	67.8	23.3	3.6/4.3/4.8	56.6/41.5/31.1	50.3/30.9/ 20.5	20.4/15.0/ 11.2
40 wt%	520	2.7	24520	58.7	61.4	21.0	3.5/4.1/4.6	50.4/35.8/25.4	45.7/28.0/ 17.1	18.1/13.0/ 9.1

Table S5. EL performances of BPAPTC with different doped ratios.

Fig. S15. EL performance of mBPAPTC with different doped ratios; (a) EL spectra; (b) Current density-voltageluminance curves; (c) Luminous efficiency-luminance-power efficiency curves; (d) EQE-luminance curves.

		V _{on} [V]	М	ax perf	ormance	e	Device performance at 1000/5000/10000 cd m ⁻²			
Device [EL [nm]		L [cd m ⁻²]	LE [cd A ⁻¹]	PE [lm W ⁻¹]	EQE [%]	V _d [V]	LE [cd A ⁻¹]	PE [lm W ⁻¹]	EQE [%]
10 wt%	520	3.3	26935	33.9	28.0	13.0	5.9/7.4/8.5	27.1/18.5/13.4	14.3/7.8/ 5.0	10.3/7.1/ 5.1
20 wt%	520	2.9	30590	47.9	50.0	17.8	4.3/5.4/6.3	35.5/25.0/18.3	25.9/14.6/ 9.1	13.2/9.4/ 6.7
30 wt%	520	2.8	37160	44.4	46.5	16.1	3.9/4.7/5.4	36.6/29.6/23.3	29.1/19.6/ 13.8	13.3/10.7/ 8.5
40 wt%	520	2.8	32433	42.3	42.9	15.3	3.7/4.5/5.0	33.9/26.9/21.1	28.3/18.7/ 13.0	12.3/9.7/ 7.6

Table S6. EL performances of mBPAPTC with different doped ratios.

Fig. S16. EL performance of BPAMTC with different doped ratios; (a) EL spectra; (b) Current density-voltageluminance curves; (c) Luminous efficiency-luminance-power efficiency curves; (d) EQE-luminance curves.

		V _{on} [V]	М	ax perf	ormance	e	Device performance at 1000/5000/10000 cd $\mathrm{m}^{\text{-}2}$			
E Device [n	EL [nm]		L [cd m ⁻²]	LE [cd A ⁻¹]	PE [lm W ⁻¹]	EQE [%]	V _d [V]	LE [cd A ⁻¹]	PE [lm W ⁻¹]	EQE [%]
10 wt%	492/ 519	3.5	10326	23.4	18.6	10.0	6.5/8.3/10.2	13.5/6.7/3.3	6.5/2.6/ 1.0	5.7/3.3/ 1.1
20 wt%	492/ 519	3.0	10283	32.5	34.0	13.8	4.8/6.6/8.9	19.0/8.8/3.6	12.6/4.3/ 0.93	8.2/3.7/ 1.5
30 wt%	484/ 519	2.8	9848	30.2	30.6	13.2	4.3/5.7/	20.7/9.2/	14.9/5.0/	9.0/4.0/
40 wt%	486/ 516	2.8	9723	33.7	37.8	14.7	4.5/6.1/	20.1/8.6/	13.9/4.5/ 	8.8/3.8/

Table S7. EL performances of BPAMTC with different doped ratios.

Fig. S17. EL performance of mBPAMTC with different doped ratios; (a) EL spectra; (b) Current density-voltageluminance curves; (c) Luminous efficiency-luminance-power efficiency curves; (d) EQE-luminance curves.

			М	ax perf	ormance	e	Device performance at 1000/5000/10000 cd $\mathrm{m}^{\text{-}2}$			
EL Device [nm]	EL [nm]	L V _{on} n] [V]	L [cd m ⁻²]	LE [cd A ⁻¹]	PE [lm W ⁻¹]	EQE [%]	V _d [V]	LE [cd A ⁻¹]	PE [lm W ⁻¹]	EQE [%]
10 wt%	484/ 520	4.2	8055	10.3	6.7	4.8	7.4/9.6/	6.2/3.2/	2.6/1.1/	2.9/1.5/
20 wt%	484/ 520	3.0	11113	20.0	19.8	9.0	5.1/7.0/8.9	12.4/6.5/3.7	7.6/2.9/ 1.3	5.5/2.9/ 1.6
30 wt%	484/ 520	2.8	10864	21.2	22.2	9.5	4.7/6.4/8.1	11.8/6.4/3.5	7.9/3.1/ 0.69	5.3/2.9/ 1.6
40 wt%	484/ 520	2.8	10677	19.5	20.4	8.8	4.6/6.1/7.7	11.2/6.2/3.3	7.7/3.3/ 1.3	5.0/2.8/ 1.5

Table S8. EL performances of mBPAMTC with different doped ratios.

Fig. S18. EL performance of MPAPTC with different doped ratios; (a) EL spectra; (b) Current density-voltageluminance curves; (c) Luminous efficiency-luminance-power efficiency curves; (d) EQE-luminance curves.

			М	ax perf	ormanc	e	Device performance at 1000/5000/10000 cd m ⁻²			
Device	EL [nm]	V _{on} [V]	L [cd m ⁻²]	LE [cd A ⁻¹]	PE [lm W ⁻¹]	EQE [%]	V _d [V]	LE [cd A ⁻¹]	PE [lm W ⁻¹]	EQE [%]
10 wt%	564	3.0	26265	28.4	28.1	9.1	5.6/7.5/8.7	19.4/12.6/9.2	10.7/5.3/ 3.3	6.2/4.0/ 2.9
20 wt%	564	2.7	37611	26.3	28.6	8.4	4.1/5.2/6.0	24.4/19.7/15.7	18.5/11.8/ 8.3	7.7/6.3/ 5.0
30 wt%	568	2.7	41639	21.2	21.2	6.7	3.8/4.6/5.2	21.3/18.9/16.1	17.8/13.0/ 9.7	6.7/6.0/ 5.1
40 wt%	568	2.7	44394	22.4	22.6	7.2	3.8/4.8/5.4	22.4/19.4/16.7	18.1/12.7/ 9.7	7.2/6.3/ 5.4

Table S9. EL performances of MPAPTC with different doped ratios.

Table S10. EQE values of TSCT compounds with different doped ratios.

Company		EQE (%)						
Compounds	Devices	10 wt%	20 wt%	30 wt%	40 wt%			
BPAPTC	1		24.3					
(Chem.								
Commun.)								
	2		24.3					
	3		24.2					
BPAPTC	1	21.2	22.8	21.3	21.0			
(this work)								
	2	20.8	21.1	23.3	21.0			
	3	19.2	22.7	22.5	17.8			
mBPAPTC	1	13.0	16.8	16.1	15.3			
	2	12.2	17.8	14.5	12.4			
	3	12.3	16.9	15.1	11.9			
BPAMTC	1	9.7	11.0	12.9	13.0			
	2	10.0	12.9	13.2	13.6			
	3	9.1	13.8	12.9	14.7			
mBPAMTC	1	4.8	7.8	9.0	8.8			
	2	4.1	9.0	8.1	6.7			
	3	3.7	8.9	9.5	7.3			
MPAPTC	1	9.1	8.4	6.7	7.2			
	2	8.4	7.8	6.6	6.6			
	3	9.1	7.7	6.6	6.3			

 Table S11. Devices performances of TSCT-based TADF compounds.

Compounds	Φ_{PL} Tol/	EL	V _{on}	EQE _{max}	Process	rafs
Compounds	film (%)	(nm)	(V)	(%)		
	7.7/66	584	3.2	10	Vacuum- deposition	J. Am. Chem. Soc. 2017 , 139, 4894-4900
H H H H H H H H H H H H H H H H H H H	6.0/35	488	3.7	4	Vacuum- deposition	
TPA-ORX(CM)2	35 /	573		9.4	Vacuum- deposition	J. Am. Chem. Soc. 2015 , 137, 11908-11911
TPA-PRZ(CN)2	25/	542		4.0	Vacuum- deposition	
H H H H H H H H H H H H H H H H H H H	78/96	~500	2.8	27.4	Vacuum- deposition	Nat. Mater. 2020 , 19, 1332-1338
DM-Bm	69/92	~500	2.6	21.7	Vacuum- deposition	
DM-G	51/88	~500	3.0	18.5	Vacuum- deposition	
DM-X	12/32	~500	3.4	4.3	Vacuum- deposition	
(R/S)-SFST	/53	508	3.6	12.5	Vacuum- deposition	J. Am. Chem. Soc. 2020 , 142, 17756-17765

(R/S)-SFOT	/89	508	4.0	23.1	Vacuum- deposition	
	/87	504	< 3	30.8	Vacuum- deposition	Adv. Mater. 2020,
tBu the second s		486	6-7.5	16.2	Solution	2003885
	/86	518	< 3	26.3	Vacuum- deposition	
tBu		504	6-7.5	20.1	Solution	
cis-Bz-PCP-TPA	45/12 (at 404, 492 nm)					Chem. Commun. 2018 , 54, 9278
trans-B2-PCP-TPA	60/15 (at 404, 455 nm)					
PCZ-CB-TRZ	3/97	586	6.3	11.0	Vacuum- deposition	Angew. Chem. Int. Ed. 2016 , 55, 7171-7175
HACB-TRZ	3/55	631	4.4	10.1	Vacuum- deposition	
PXZ.TPA.TRZ	/50	~ 500	~ 2.5	10.5	Vacuum- deposition	J. Phys. Chem. C 2019 , 123, 12400-12410
DMAC-TPA-TRZ	/100	~ 546	~ 2.5	22	Vacuum- deposition	

CTPS	10.8/24	~ 500	2.6	2.55	Vacuum- deposition	Chem. Mater. 2019 , 31, 5981-5992
Y H H H H H H H H H H H H H H H H H H H	/55	~520	<3	16.57	Vacuum- deposition	Angew. Chem. Int. Ed. 2021 , 60, 3994-3998
HAND DPXZ-CTZ	/78	~529	~3.3	19.71	Vacuum- deposition	
LPVZ-BO	/99	~515	~3.0	23.96	Vacuum- deposition	
TpAT-IFFO	84/76	498	~4.0	19.2 (w/o oc sheet) 29.0 (w/ oc sheet)	Vacuum- deposition	Nat. Photon. 2020 , 14, 643-649
lb-1	/96.8	506	4.4	12.3	Solution	<i>Adv. Optical Mater.</i> 2021 , <i>9</i> , 2100180
F S S S S S S S S S S S S S S S S S S S	/99.7	508	4.0	20.1	Solution	
	/88.8	514	4.4	11.28	Solution	
ASTREE	/54	492	2.9	11.0	Solution	Chem. Sci., 2019 , 10, 2915-2923

Stand Stand	/63	503	2.9	14.2	Solution	
	/74	477	2.9	18.2	Solution	Angew. Chem. Int. Ed. 2021 , 60, 16585-16593
Section of the sectio	/86	552	2.8	21.9	Solution	
Story Story	/49	626	3.0	10.3	Solution	

NMR spectra

Fig. S19. ¹H NMR spectrum of MPAPTC.

Fig. S20. ¹³C NMR spectrum of MPAPTC.

Fig. S21. ¹H NMR spectrum of CI-MT.

Fig. S22. ¹³C NMR spectrum of CI-MT.

Fig. S23. ¹H NMR spectrum of MTC.

Fig. S24. ¹³C NMR spectrum of MTC.

Fig. S25. ¹H NMR spectrum of Br-MTC.

Fig. S26. ¹³C NMR spectrum of Br-MTC.

Fig. S27. ¹H NMR spectrum of BPAMTC.

Fig. S28. ¹³C NMR spectrum of BPAMTC.

Fig. S29. ¹H NMR spectrum of BPAC.

Fig. S30. ¹³C NMR spectrum of BPAC.

Fig. S31. ¹H NMR spectrum of mBPAPTC.

Fig. S32. ¹³C NMR spectrum of mBPAPTC.

Fig. S33. ¹H NMR spectrum of mBPAMTC.

Fig. S34. ¹³C NMR spectrum of mBPAMTC.

References

[1] H. Tanaka, K. Shizu, H. Miyazaki, C. Adachi, *Chem. Commun.*, 2012, **48**, 11392.

[2] Y Li, T Tan, S Wang, Y Xiao, X Li, Dyes Pigments., 2017, 144, 262.

[3] S Xie, Z Yan, Y Li, Q Song, M Ma, J. Org. Chem., 2018, 83, 10916.

P. Pandit, K. Yamamoto, T. Nakamura, K. Nishimura, Y. Kurashige, T. Yanai, G. Nakamura, S. Masaoka, K.
 Furukawa, Y. Yakiyama, M. Kawanoe, S. Higashibayashi, *Chem. Sci.*, 2015, 6, 4160.

[5] K Li, Y Zhu, B Yao, Y Chen, H Deng, Q Zhang, H Zhan, Z Xie and Y Cheng, *Chem. Commun.*, 2020, **56**, 5957.