Supporting Information

Zn-Derived Ligand Engineering towards Stable and Bright CsPbI₃

Nanocrystals for White Emitting

Wenbin Shi, a Xiao Zhang, * Hsueh Shih Chen, Katarzyna Matras-Postolek, b and Ping Yanga*

^{a.} School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China. E-mail: mse_yangp@ujn.edu.cn

^{b.} Faculty of Chemical Engineering and Technology, Cracow University of Technology, Krakow, 31-155, Poland. E-mail: friends_zhangxiao@yahoo.co.jp

^{c.} Department of Materials Science & Engineering, National Tsing Hua University, Hsinchu City, 300, Taiwan

Table S1. Element molar ratios of CsPbI₃ NCs from XPS analysis.

Sample	Cs [%]	Pb [%]	I [%]	Zn [%]
CsPbI ₃	4.3	4.8	12.9	0
Zn:CsPbI ₃	4.2	4.6	11.8	0.5
DDT-	4.3	4.4	12.3	0.5
Zn:CsPbI ₃				

Table S2. PL peak position and FWHM of CsPbI₃ NCs

Sample	PL peak [nm]	FWHM [nm]
Pb:Zn 1:0	696	33.9
Pb:Zn 7:3	695	33.7
Pb:Zn 1:1	693	34.2
Pb:Zn 3:7	689	34.5
Pb:Zn 1:3	687	36.2
DDT 50 µL (Pb:Zn 3:7)	689	34.0
DDT 100 µL (Pb:Zn 3:7)	689	33.6
DDT 150 µL (Pb:Zn 3:7)	689	34.3
DDT 200 µL (Pb:Zn 3:7)	689	33.9

Sample	$\tau_{ave}(ns)$	PLQY (%)	$\Gamma_{rad}(\mu s^{-1})$	$\Gamma_{non\text{-}rad}\left(\mu s^{\text{-}1}\right)$
CsPbI ₃	49.8	20.5	4.1	15.9
DDT-CsPbI ₃ (DDT: 50 μ L)	51.7	22.3	4.3	15.0
DDT-CsPbI ₃ (DDT: 100 µL)	55.6	25.9	4.7	13.3
DDT-CsPbI ₃ (DDT: 150 µL)	53.7	24.9	4.6	13.9
DDT-CsPbI ₃ (DDT: 200 μ L)	52.1	23.5	4.5	14.7
Zn:CsPbI ₃ (Pb:Zn 3:1)	96.8	45.7	4.7	5.6
Zn:CsPbI ₃ (Pb:Zn 7:3)	107.1	51.3	4.8	4.5
Zn:CsPbI ₃ (Pb:Zn 1:1)	114.1	55.6	4.9	3.9
Zn:CsPbI ₃ (Pb:Zn 3:7)	150.1	78.1	5.2	1.5
Zn:CsPbI ₃ (Pb:Zn 3:1)	129.6	65.2	5.0	2.8
DDT-Zn:CsPbI ₃ (Pb:Zn 3:7) (DDT: 50 μ L)	165.9	88.5	5.3	0.8
DDT-Zn:CsPbI ₃ (Pb:Zn 3:7) (DDT: 100 μ L)	178.6	95.4	5.4	0.2
DDT-Zn:CsPbI ₃ (Pb:Zn 3:7) (DDT: 150 μ L)	166.5	89.2	5.4	0.6
DDT-Zn:CsPbI $_3$ (Pb:Zn 3:7) (DDT: 200 μ L)	85.5	40.6	4.8	7.0

Table S3. Radiative and non-radiative recombination rates of CsPbI₃ NCs

The radiative and non-radiative recombination rates were estimated as follows.

 $\Gamma_{rad} = \eta_{PL} / \tau_{ave}$ (1) $\Gamma_{non-rad} = (1 - \eta_{PL}) / \tau_{ave}$ (2)

Where, Γ_{rad} and $\Gamma_{non-rad}$ were radiative and non-radiative recombination rates, respectively. η_{PL}

and τ_{ave} were the PLQY and average lifetime of samples, respectively.

Fig. S1 PL decay plots of DDT-CsPbI₃, Zn:CsPbI₃ and DDT-Zn:CsPbI₃ NCs.

Fig. S2 Evolution of PLQYs of CsPbI₃ and DDT-Zn:CsPbI₃ NCs under 365 nm UV light irradiation.

Fig. S3 Evolution of PLQYs of CsPbI₃ and DDT-Zn:CsPbI₃ NCs after hot-treatment cycles.

Fig. S4 Photographs of as-prepared (a and b) DDT-Zn:CsPbI₃ NCs Films and after 100 days (c and d) under room light (a and c) and 365 nm UV light (b and d) irradiation.

Fig. S5 XRD patterns of CsPbI₃ and DDT-Zn:CsPbI₃ NCs after 100 days.

Fig. S6 Evolution of PLQYs of CsPbI₃ and DDT-Zn:CsPbI₃ film after 100 days.

Fig. S7 Emission spectra of WLEDs obtained after different running periods.

Fig. S8 CIE coordinates of WLEDs obtained after different running periods.