Electronic Supplementary Information (ESI) for Journal of Materials Chemistry C

Time-resolved XAS studies reveal sequential oxidative-reductive formation of Na-doped iridium oxide film with enhanced bio-stimulating performance

Kuang-Chih Tso,^{a,b} Yi-Chieh Hsieh,^c Jyh-Fu Lee,^d Chih-Wen Pao,^d Po-Chun Chen,^e Jun Ohta^b and Pu-Wei Wu^{*,c}

^a Graduate Program of Accelerator Light Source, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan

^b Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan

^c Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan

^d National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan

^e Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan

*Corresponding author at:

Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan

E-mail address: ppwu@nycu.edu.tw

Fig. S1 The k^3 -weighted Fourier-transformed EXAFS profiles of Ir L₃-edge and their respective fitting curves for chemical baths in four distinct stages; a) I: K₃IrCl₆ aqueous solution, b) II: K₃IrCl₆ aqueous solution mixed with KNaC₄H₄O₆, c) III: K₃IrCl₆ aqueous solution mixed with KNaC₄H₄O₆, c) III: K₃IrCl₆ aqueous solution mixed with KNaC₄H₄O₆, and NaOH, and d) IV: K₃IrCl₆ aqueous solution mixed with KNaC₄H₄O₆, NaOH, and NaClO.

Fig. S2 The XRD pattern of Na-doped iridium oxide and ITO standard.

Fig. S3 The TEM image with EDS mapping profiles of Na-doped iridium oxide.

Fig. S4 The TEM/EDS line and point scans for Na-doped iridium oxide.

Fig. S5 a) The CV profiles of Na-doped iridium oxide for 1,000 cycles. b) The corresponding CSC as a function of CV cycles.

Fig. S6 The cell viability of Na-doped iridium oxide and control group (glass substrate) for 24 and 96 h, respectively.

Stage	Edge energy shift (subtracted by the absorption energy		
	of standard IrO ₂)		
Ι	-1.93 eV		
II	-1.70 eV		
III	-1.54 eV		
IV	0.84 eV		

Table S1 The edge energy shift of Ir L_3 -edge XANES profiles from chemical baths in differentstages.

Stage	Path	Nª	R (Å) ^b	$\Delta\sigma_j^2 (\times 10^{-3} \text{ Å}^2)^c$	R-factor ^d
Ι	Ir-O ^e	1	2.04	3.1	0.013
	Ir-Cl	5	2.35	3.1	
II	Ir-O ^e	1	2.04	11.4	0.005
	Ir-O ^f	1	2.06	11.4	
	Ir-Cl	4	2.35	2.3	
III	Ir-O ^f	1	2.06	4.2	0.006
	Ir-O ^g	3	2.03	4.2	
	Ir-Cl	2	2.37	0.9	
IV	Ir^{V} - O^{h}	1	1.67	2.8	0.002
	Ir-O ^g	5	1.96	2.0	

Table S2 The fitting parameters of Ir L_3 -edge EXAFS profiles from chemical baths in different stages.

a: coordination number, b: bonding distance, c: Debye-Waller factor, d: difference between data and fitting, e: Ir-O^eH₂, f: Ir-O^fOC(OH)C₂H₂(OH)COO⁻, g: Ir-O^gH, h: Ir=O^h.

	Peak	FWHM (eV)	Binding energy (eV)	Area
Ir ⁵⁺	4f _{5/2}	2.10	66.80	3,273.05
	$4f_{7/2}$	2.10	63.80	4,364.06
Ir^{4+}	$4f_{5/2}$	1.00	65.45	2,102.39
	$4f_{7/2}$	1.00	62.45	2,803.19
	4f satellite	2.20	65.90	2,851.25
	4f satellite	2.20	62.90	3,801.66
	4f satellite	3.88	67.80	1,366.88
Na ⁺	2s	2.00	65.80	6,46.24
O ²⁻	1s	2.00	530.50	7,006.80
OH-	1s	2.00	531.60	7,741.20
H ₂ O	1s	2.00	532.90	1,439.10

Table S3 The fitting parameters of XPS profiles and their fitting results for Na-doped iridium oxide.

Sample	Path	N ^a	R (Å) ^b	$\Delta \sigma_j^2 (\times 10^{-3} \text{ Å}^2)^c$	R-factor ^d
Na-doped IrO _x	Ir-O ₁	1.73	1.93	3.7	0.009
	Ir-O ₂	3.45	1.97	3.7	
	Ir-Ir	1.73	3.09	15.6	
	Ir-Na	1.73	3.22	1.2	
hydrous ^e	Ir-O ₁	1.49	1.98	4.8	0.001
	Ir-O ₂	2.98	2.01	4.8	
pristinef	Ir-O ₁	1.60	1.96	2.3	0.009
	Ir-O ₂	3.20	1.99	2.3	

Table S4 The fitting parameters of Ir L₃-edge EXAFS profile for Na-doped iridium oxide.

a: coordination number, b: bonding distance, c: Debye-Waller factor, d: difference between data and fitting, e: standard hydrous IrO₂, f: standard pristine IrO₂, Ir-O₁: apical bond, Ir-O₂: planar bond.

	$\mathrm{R_{s}^{a}}\left(\Omega ight)$	$R_{ct}^{b}(\Omega)$
Na-doped iridium oxide	139.1	12.35
Sputtered iridium oxide	138.3	120.2

 Table S5 The impedance fitting results for Na-doped iridium oxide and sputtered iridium

oxide.

a: electrolyte resistance; b: charge transfer resistance