Supplementary Materials for

Origin of ultra-wide temperature dielectric stability and dynamic behavior of nanoregions in 0.6Bi(Mg_{0.5}Ti_{0.5})O₃-

0.4Ba_{0.8}Ca_{0.2}(Ti_{0.875}Zr_{0.125})O₃

Kaiyuan Chen^{1,2}, Tianxiang Yang², Jia Liu³, Xiuyun Lei², Liang Fang², Biaolin Peng⁴, Senentxu Lanceros-Méndez^{1,5}, Dawei Wang^{3*}, Laijun Liu^{2*}, Qi Zhang^{1,5*}

* Corresponding authors. E-mail addresses:

dawei.wang@xjtu.edu.cn (Prof. D. Wang),

2009011@glut.edu.cn (Prof. L. Liu),

<u>qi.zhang@bcmaterials.net</u> (Prof. Q. Zhang).

Captions of Figures

Fig. S1. Sketch of the dynamics of two kinds of PNRs of a re-entrant relaxor.

Comparison of comprehensive dielectric properties of 0.6BMT-0.4BCZT and

0.6Bi(Mg_{0.5}Ti_{0.5})O₃-0.4Ba_{0.8}Ca_{0.2}TiO₃ (0.6BMT-0.4BCT);¹ 0.6Bi(Mg_{0.5}Ti_{0.5})O₃-

0.4Ba_{0.8}Ca_{0.2}(Ti_{0.875}Nb_{0.125})O₃ (0.6BMT-0.4BCNT);¹ 0.82(0.94Na_{0.5}Bi_{0.5}TiO₃-

0.06BaTiO₃)-0.18K_{0.5}Na_{0.5}NbO₃ [0.82(0.94NBK-0.06KBT)-0.18KNN];²

0.75K_{0.5}Bi_{0.5}TiO₃-0.25BiScO₃ (0.75KBT-0.25BS);³ Bi₀₅Na_{0.5}TiO₃-0.03Yb₂O₅ (BNT-

0.03Yb) for 1 MHz.⁴

Fig. S2. (a) The surface SEM images of 0.6BMT-0.4BCZT; (b)The statistic

distributions of the gain size in ceramics using Gauss distribution.

Fig. S3. (a) HRTEM image of using Inverse Fourier transform, (b) nano-scale-ordered structure and (c), (d) disorder structure.

Fig. S4. Variation of the gray value of the corresponding (a), (b), (c) and (d) HRTEM images presented in Fig. S3.

Fig. S5. (a) Temperature dependence of main relaxation time according to the M'' peak. The purple line is the the Arrhenius and Volgel-Fulcher fitting, (b) permittivity variation of the ratio of $\varepsilon_{\infty}(T)$ to $\varepsilon_{I MHz}(T)$ as a function of temperature in the 633 K to 973 K.

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S5

References

- S. Ren, Z. Chen, T. Yang, F. Hang, X. Kuang, L. Fang, and L. Liu, *J. Phys. Chem. Solids*.
 2018, 118, 99-08.
- 2 R. Dittmer, W. Jo, D. Damjanovic, J. Rödel, J. Appl. Phys. 2011, 109, 346.
- 3 C. Kruea-In, G. Rujijanagul, F.Y. Zhu, and S.J. Milne, *Appl. Phys. Lett.* 2012, 100, 202904.
- 4 F. Han, J. Deng, X. Liu, T. Yan, S. Ren, X. Ma, S. Liu, B. Peng, and L. Liu, *Ceram. Int.* 2017, 43, 5564-5573.