New Alkali Lanthanide-free Polyoxometalates with Remarkable Water-

Responsive Turn-Off-On Luminescence Properties

Aurély Bagghi, Rania Ghena, Nicolas Gautier, Nicolas Stephant, Philippe Deniard,* Rémi

Dessapt*

Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France

Electronic Supporting Information

Table of contents:

Fig. S1- Experimental and simulated PXRD patterns of $Na_7[SbW_6O_{24}]$ ·16H ₂ O and $K_5Na_2[SbW_6O_{24}]$ ·12H ₂ O
Fig. S2- Experimental and simulated PXRD patterns of K7[SbW6O24]·6H2O5
Fig. S3- FT-IR spectra of $Na_7[SbW_6O_{24}]$ ·16H ₂ O, $K_5Na_2[SbW_6O_{24}]$ ·12H ₂ O and $K_7[SbW_6O_{24}]$ ·6H ₂ O6
Fig. S4- High Angle Annular Dark Field image, EDS spectrum and EDS ratio acquired on K ₇ [SbW ₆ O ₂₄]·6H ₂ O7
Fig. S5- Crystal packing of Na7[SbW6O24]·16H2O8
Fig. S6- TGA/DSC curves of K ₅ Na ₂ [SbW ₆ O ₂₄]·12H ₂ O9
Fig. S7- TGA/DSC curves of K ₇ [SbW ₆ O ₂₄]·6H ₂ O10
Fig. S8- PXRD patterns of Na ₇ [SbW ₆ O ₂₄], K ₅ Na ₂ [SbW ₆ O ₂₄] and K ₇ [SbW ₆ O ₂₄]11
Table S1- Crystallographic data and structure refinement parameters of $K_5Na_2[SbW_6O_{24}]12$
Fig. S9- Observed, refined and difference patterns of K ₅ Na ₂ [SbW ₆ O ₂₄] after Rietveld refinement at 500 °C
Table S2- Crystallographic data and structure refinement parameters of $K_7[SbW_6O_{24}]$ 13
Fig. S10- Observed, refined and difference patterns of $K_7[SbW_6O_{24}]$ after Rietveld refinement (T = 30 °C)13
Fig. S11- FTIR-ATR spectra of K5Na2[SbW6O24] and K7[SbW6O24]14
Fig. S12- FT-Raman spectra of $K_5Na_2[SbW_6O_{24}]$ and $K_7[SbW_6O_{24}]$ 15
Fig. S13- TGA/DSC curves of rehydrated Na7[SbW6O24]16
Fig. S14- PXRD patterns of rehydrated $K_5Na_2[SbW_6O_{24}]$ and $K_7[SbW_6O_{24}]$ 17
Fig. S15- Evolution of the PXRD pattern of $Na_7[SbW_6O_{24}]$ ·16H ₂ O during successive dehydration (200°C)/rehydration (100% RH, room temperature, 3 days) cycles18
Fig. S16- SEM images of $K_5Na_2[SbW_6O_{24}] \cdot 12H_2O$ and $K_5Na_2[SbW_6O_{24}]$ particles during a thermal dehydration (200 °C, 10 minutes)/rehydration (100% RH, 3 days) process19
Fig. S17- PXRD pattern of deuterated K5Na2[SbW6O24]20
Fig. S18- FTIR-ATR spectrum of deuterated K5Na2[SbW6O24]21
Fig.S19-Absorptionspectraof $Na_7[SbW_6O_{24}] \cdot 16H_2O$, $Na_7[SbW_6O_{24}]$, $K_5Na_2[SbW_6O_{24}] \cdot 12H_2O$, $K_5Na_2[SbW_6O_{24}]$, $K_7[SbW_6O_{24}] \cdot 6H_2O$ and $K_7[SbW_6O_{24}]$
Fig. S20- Room-temperature excitation and emission spectra of $Na_7[SbW_6O_{24}]\cdot 16H_2O$, $K_5Na_2[SbW_6O_{24}]\cdot 12H_2O$ and $K_7[SbW_6O_{24}]\cdot 6H_2O$
Fig. S21- CIE chromaticity diagrams of $Na_7[SbW_6O_{24}]$ ·16H ₂ O, $K_5Na_2[SbW_6O_{24}]$ ·12H ₂ O and $K_7[SbW_6O_{24}]$ ·6H ₂ O
Fig. S22- Room-temperature luminescence decay curves of $Na_7[SbW_6O_{24}]\cdot 16H_2O$, $Na_7[SbW_6O_{24}]$, $K_5Na_2[SbW_6O_{24}]\cdot 12H_2O$, $K_5Na_2[SbW_6O_{24}]$, $K_7[SbW_6O_{24}]\cdot 6H_2O$ and $K_7[SbW_6O_{24}]$

Fig. K5Na	S23- 1 ₂ [SbV	Room V ₆ O ₂₄]	-temperature	emission	spectr	rum an	id deca	y curve	of de	uterated
Fig. K7[Sl	S24- bW ₆ O	Room-te 24]	emperature e	xcitation a	nd em	ission s	spectra (of K ₅ Na ₂	[SbW ₆ O	24] and
Fig. K7[Sl	S25- bW ₆ O	CIE 24]	chromaticity	diagrams	of	Na7[Sb	W ₆ O ₂₄],	K5Na2[S	SbW ₆ O ₂	4] and
Fig. K7[Sl	S26- bW ₆ O	Room 24] ·6H 2C	n-temperature D during a deh	emission ydration/re	spec hydrati	tra of on cycle	K ₅ Na	2[SbW ₆ O ₂	₂₄]•12H₂	0 and 29
Fig. S to 10((b) K	5 27- E [*] 0% RH 5 Na 2[S	volution I over a SbW ₆ O ₂	of the room- period of 480 [4] and (c) K 7[temperature min for (a) SbW ₆ O ₂₄].	PL spe Na ₇ [S	ectra (m bW ₆ O ₂₄	onitored], and ov	at 254 nm ver a perio) upon e d of 120	xposure min for
Fig. S (1h at	5 28- P2 : 100%	XRD pa 5 RH)	tterns of K ₅ N	a ₂ [SbW ₆ O ₂	4]·12H	2 0 and 1	K ₅ Na ₂ [S	bW ₆ O ₂₄] a	after rehy	dration
Refer	ences	•••••	•••••	• • • • • • • • • • • • • • • •	•••••	••••		•••••••	,	32

Fig. S1. Comparison between experimental (red line) and simulated (black line) PXRD patterns of a) $Na_7[SbW_6O_{24}]$ ·16H₂O, and b) $K_5Na_2[SbW_6O_{24}]$ ·12H₂O.

Fig. S2. Comparison between the experimental PXRD pattern of $K_7[SbW_6O_{24}] \cdot 6H_2O$ (red line) and the simulated PXRD pattern of the reported $K_{5.5}H_{1.5}[SbW_6O_{24}] \cdot 6H_2O^{S1}$ compound (black line).

Fig. S3. Comparison of the FT-IR spectra of a) $Na_7[SbW_6O_{24}]\cdot 16H_2O$ (black line), b) $K_5Na_2[SbW_6O_{24}]\cdot 12H_2O$ (red line), and c) $K_7[SbW_6O_{24}]\cdot 6H_2O$ (blue line).

Fig. S4. a) High Angle Annular Dark Field image, b) EDS spectrum and c) EDS ratio acquired on $K_7[SbW_6O_{24}]$ ·6H₂O.

Fig. S5. Representation of the complex H-bonding network involving the $[SbW_6O_{24}]^{7-}$ unit and water molecules in Na₇[SbW₆O₂₄]·16H₂O (grey octahedra = WO₆, pink octahedra = SbO₆,

green octahedra = NaO_6 , orange sphere: oxygen atoms of the POM unit, blue sphere: oxygen atoms of water molecules. H-bonding interactions between the POM anion and water molecules are displayed as blue dotted lines. H atoms are not displayed.

Fig. S6. TGA (black line) and DSC (blue line) curves of K₅Na₂[SbW₆O₂₄]·12H₂O.

The TGA/DSC curves show a weight loss of 10.36 % in the temperature range of 25-115 °C characterized by a sharp endothermic peak, in well agreement with the full removal of twelves water molecules (theoretical mass loss = 10.45 %).

Fig. S7. TGA (black line) and DSC (blue line) curves of K₇[SbW₆O₂₄]·6H₂O.

The TGA/DSC curves show a weight loss of 5.47 % in the temperature range of 25-175 °C characterized by a sharp endothermic peak, in well agreement with the full removal of six water molecules (theoretical mass loss = 5.43 %).

Fig. S8. PXRD patterns of $Na_7[SbW_6O_{24}]$ (blue line), $K_5Na_2[SbW_6O_{24}]$ (red line) and $K_7[SbW_6O_{24}]$ (black line), obtained at 650 °C, 500 °C and 550 °C, respectively.

S.G. R^3 , $a(Å) = 11.21523(14)$, $c(Å) = 17.2672(3)$, $R_{Bragg} = 6.02$, $GOF = 1.66$, $R_{wp} = 8.97$						
atom	Х	У	Z	SOF	Wyckoff	Uiso (Å2)
K1	0	0	0.5	1	3b	0.057(5)
K2	0.1166(12)	0.2508(8)	0.1969(4)	0.72(2)	18f	0.057
Na1	0.1166	0.2508	0.1969	0.28	18f	0.057
01	0.529(3)	0.1544(18)	0.3854(9)	1	18f	0.039(4)
02	-0.060(3)	-0.379(3)	0.4010(14)	1	18f	0.039
03	0.1912(15)	0.107(2)	0.2744(12)	1	18f	0.039
04	0.202(2)	-0.008(2)	0.4000(11)	1	18f	0.039
Sb1	0	0	0	1	3a	0.018(3)
W1	-0.19144(17)	-0.3306(2)	0.33594(15)	1	18f	0.0271(19)
*U _{aniso} (W1): 0.026(3); 0.0150(19); 0.0181(12);-0.006(2); 0.005(3); 0.010(2)						

Table S1. Atom positions, site occupation fraction and atomic displacement parameters of $K_5Na_2[SbW_6O_{24}]$ at 500 °C. High ADP values are due to data collection temperature.

Fig. S9. Observed, refined and difference patterns of $K_5Na_2[SbW_6O_{24}]$ after Rietveld refinement at 500 °C. ($R_{Bragg} = 6.02$, GOF = 1.66, $R_{wp} = 8.97$)

Table S2. Atom positions, site occupation fraction and atomic displacement parameters of $K_7[SbW_6O_{24}]$ at 30 °C.

S.G. R^3 , $a(Å) = 11.18224(12)$, $c(Å) = 17.5388(3)$, $R_{Bragg} = 2.49$, GOF = 1.31, $R_{wp} = 7.72$							
atom	Х	У	Z	SOF	Wyckoff	U_{iso} (Å ²)	
K1	0	0	0.5	1	3b	0.0466(18)	
K2	0.1155(6)	0.2603(4)	0.1933(2)	1	18f	0.0466(18)	
01	0.5241(15)	0.1686(11)	0.3876(6)	1	18f	0.028(2)	
O2	-0.0554(15)	-0.3594(15)	0.3886(9)	1	18f	0.028(2)	
03	0.2006(10)	0.1285(13)	0.2716(7)	1	18f	0.028(2)	
04	0.2205(13)	0.0160(16)	0.4010(7)	1	18f	0.028(2)	
Sb1	0	0	0	1	3a	0.0168(14)	
W1	-0.19003(11)	-0.33030(12)	0.33452(7)	1	18f	0.0197(9)	
*U _{aniso} (W1): 0.0181(13); 0.0187(10); 0.0144(6); 0.0032(13); 0.0033(13); 0.0028(14)							

Fig. S10. Observed, refined and difference patterns of $K_7[SbW_6O_{24}]$ after Rietveld refinement (T = 30 °C). (R_{Bragg} = 2.49, GOF = 1.31, R_{wp} = 7.72). The arrows indicate some impurity peaks.

Fig. S11. Comparison of the FTIR-ATR spectra of a) $K_5Na_2[SbW_6O_{24}]\cdot 12H_2O$ (black line) and $K_5Na_2[SbW_6O_{24}]$ (red line), and b) $K_7[SbW_6O_{24}]\cdot 16H_2O$ (black line) and $K_7[SbW_6O_{24}]$ (red line).

Fig. S12. Comparison of the FT-Raman spectra of a) $K_5Na_2[SbW_6O_{24}]\cdot 12H_2O$ (black line) and $K_5Na_2[SbW_6O_{24}]$ (red line), and b) $K_7[SbW_6O_{24}]\cdot 6H_2O$ (black line) and $K_7[SbW_6O_{24}]$ (red line).

Fig. S13. TGA (black line) and DSC (blue line) curves of $Na_7[SbW_6O_{24}]$ after rehydration in a closed chamber with a relative humidity level (RH%) of 100%, for three days at room temperature.

Fig. S14. Comparison of the PXRD patterns of a) $K_5Na_2[SbW_6O_{24}]\cdot 12H_2O$ (black line) and $K_5Na_2[SbW_6O_{24}]$ after rehydration (red line), and b) $K_7[SbW_6O_{24}]\cdot 6H_2O$ (black line) and $K_7[SbW_6O_{24}]$ after rehydration (red line). For the rehydration process, the anhydrous powdered compounds were kept for three days at room temperature, in a closed chamber with a high relative humidity level (RH%) of 100%.

Fig. S15. Evolution of the PXRD pattern of $Na_7[SbW_6O_{24}] \cdot 16H_2O$ during successive dehydration (200°C)/rehydration (100% RH, room temperature, 3 days) cycles.

Fig. S16. SEM images of $K_5Na_2[SbW_6O_{24}]\cdot 12H_2O$ and $K_5Na_2[SbW_6O_{24}]$ particles during a thermal dehydration (200 °C, 10 minutes)/rehydration (100% RH, 3 days) process.

Fig. S17. Comparison of the experimental PXRD pattern of deuterated $K_5Na_2[SbW_6O_{24}]$ (red line) and the simulated PXRD pattern of $K_5Na_2[SbW_6O_{24}]$ ·12H₂O (black line). For the deuteration process, the anhydrous $K_5Na_2[SbW_6O_{24}]$ powder sample was kept under N_2 atmosphere in a closed chamber containing heavy water, for five days at room temperature.

Fig. S18. FTIR-ATR spectra of $K_5Na_2[SbW_6O_{24}]$ after deuteration (red line) and $K_5Na_2[SbW_6O_{24}]$ ·12H₂O (black line).

The FTIR-ATR spectrum of the deuterated material clearly shows the vibration bands of D₂O around 2500 cm⁻¹ (v₃, OD-stretching modes) and 1200 cm⁻¹ (v₂, DOD-bending modes), together with weakly intense additional bands characteristic of HDO around 1400 cm⁻¹ (v₂, HOD-bending modes) and 3400 cm⁻¹ (v₃, HOD-stretching modes).^{S2} The v₂ HOH-bending modes of H₂O located at about 1600 cm⁻¹ in the spectrum of $K_5Na_2[SbW_6O_{24}]$ ·12H₂O are not observed in that of the deuterated sample.

Fig. S19. Absorption spectra of $Na_7[SbW_6O_{24}] \cdot 16H_2O$, $Na_7[SbW_6O_{24}]$, $K_5Na_2[SbW_6O_{24}] \cdot 12H_2O$, $K_5Na_2[SbW_6O_{24}]$, $K_7[SbW_6O_{24}] \cdot 6H_2O$ and $K_7[SbW_6O_{24}]$.

Fig. S20. Room-temperature Excitation spectrum (red line) and emission spectrum (black line) of a) $Na_7[SbW_6O_{24}] \cdot 16H_2O$, b) $K_5Na_2[SbW_6O_{24}] \cdot 12H_2O$, and c) $K_7[SbW_6O_{24}] \cdot 6H_2O$.

Fig. S21. CIE chromaticity diagrams of $Na_7[SbW_6O_{24}]$ ·16H₂O, $K_5Na_2[SbW_6O_{24}]$ ·12H₂O and $K_7[SbW_6O_{24}]$ ·6H₂O excited at 254 nm.

Fig. S22. Room-temperature luminescence decay curves ($\lambda_{ex} = 254 \text{ nm}$) monitored at 513 nm for a) Na₇[SbW₆O₂₄]·16H₂O, b) K₇[SbW₆O₂₄]·6H₂O, c) K₅Na₂[SbW₆O₂₄]·12H₂O, d) Na₇[SbW₆O₂₄], e) K₇[SbW₆O₂₄] and f) K₅Na₂[SbW₆O₂₄]. The plots I = f(t) have been correctly fitted by a monoexponential law. Extracted decay times (τ) and regression coefficients (R²) are indicated.

Fig. S23. a) Room-temperature emission spectra monitored at 254 nm of $K_5Na_2[SbW_6O_{24}] \cdot 12H_2O$ (black line) and $K_5Na_2[SbW_6O_{24}]$ after deuteration in a closed chamber containing heavy water, for five days at room temperature (red line). b) Room-temperature luminescence decay curves ($\lambda_{ex} = 254$ nm) monitored at 513 nm for $K_5Na_2[SbW_6O_{24}]$ after deuteration. The plots I = f(t) have been correctly fitted by a monoexponential law. Extracted decay times (τ) and correlation coefficients (\mathbb{R}^2) are indicated.

Fig. S24. (a) Top: Photographs of $K_5Na_2[SbW_6O_{24}]\cdot 12H_2O$ and $K_5Na_2[SbW_6O_{24}]$ upon UV excitation ($\lambda_{ex} = 254$ nm) at room temperature. Bottom: Room-temperature excitation spectrum (red line) monitored at 513 nm and emission spectrum (black line) monitored at 254 nm of $K_5Na_2[SbW_6O_{24}]$. (b) Top: Photographs of $K_7[SbW_6O_{24}]\cdot 6H_2O$ and $K_7[SbW_6O_{24}]$ upon UV excitation ($\lambda_{ex} = 254$ nm) at room temperature. Bottom: room-temperature excitation spectrum (red line) monitored at 513 nm and emission spectrum (black line) monitored at 254 nm of $K_7[SbW_6O_{24}]\cdot 6H_2O$ and $K_7[SbW_6O_{24}]$ upon UV excitation ($\lambda_{ex} = 254$ nm) at room temperature. Bottom: room-temperature excitation spectrum (red line) monitored at 513 nm and emission spectrum (black line) monitored at 254 nm of $K_7[SbW_6O_{24}]$.

Fig. S25. CIE chromaticity diagrams of Na₇[SbW₆O₂₄], K₅Na₂[SbW₆O₂₄] and K₇[SbW₆O₂₄] excited at 254 nm.

Fig. S26. Room-temperature PL spectra monitored at 254 nm of a) $K_5Na_2[SbW_6O_{24}]$ and b) $K_7[SbW_6O_{24}]$ before (black line) and after (blue line) rehydration for three days at 100% RH, compared with that of pristine a) $K_5Na_2[SbW_6O_{24}]\cdot 12H_2O$ and b) $K_7[SbW_6O_{24}]\cdot 6H_2O$ (red line).

Fig. S27. Evolution of the room-temperature PL spectra (monitored at 254 nm) upon exposure to 100% RH over a period of 480 min for (a) $Na_7[SbW_6O_{24}]$, and over a period of 120 min for (b) $K_5Na_2[SbW_6O_{24}]$ and (c) $K_7[SbW_6O_{24}]$.

Fig. S28. PXRD patterns of $K_5Na_2[SbW_6O_{24}]\cdot 12H_2O$ and $K_5Na_2[SbW_6O_{24}]$ after rehydration. For the rehydration process, the anhydrous compound was kept for 1h at room temperature in a closed chamber at 100% RH.

References

- H. Naruke, T. Yamase, *Acta Crystallogr. C Cryst. Struct. Commun.* 1992, **48**, 597–599. M. Ceccaldi, M. Goldman, E. Roth, *Spectrochim. Acta* 1956, **11**, 623–631. **S**1
- S2