Supporting Information

Ultrathin 2D silver sulphate nanosheets for visible-light-driven NO₂ sensing

at room temperature

Turki Alkathiri,^{ab} Kai Xu,^{*a} Zhengdong Fei,^{*ac} Guanghui Ren,^a Nam Ha,^a Muhammad Waqas Khan,^a Nitu Syed,^a Ahmed F.M. Almutairi,^a Bao Yue Zhang,^a Rui Ou,^a Yihong Hu,^a Jiaru Zhang,^a Torben Daeneke,^a and Jian Zhen Ou^{*a}

- a. School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
 E-mail: jianzhen.ou@rmit.edu.au; kai.xu@rmit.edu.au
- b. School of Engineering, Albaha University, Albaha 65779, Saudi Arabia.
- c. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.

E-mail: feizd@zjut.edu.cn

Fig. SI-1. a) Schematic representation of the tube furnace oxidation process for the conversion of Ag_2S bulk powder to Ag_2SO_4 bulk powder; the furnace was maintained at a temperature of 600°C. Air was used as the carrier gas with a flow rate of ~100 sccm. b-d) Schematic diagram illustrating the delamination of 2D Ag_2SO_4 nanosheets from bulk Ag_2SO_4 . e) Crystal structures of Ag_2SO_4 with a-axis orientation.

Fig. SI-2. a) The XRD for the bulk Ag_2S as it received (black powder). b) The XRD for the bulk Ag_2SO_4 After annealing the bulk Ag_2S at ~600° C for 6 hr (grey powder) is shown for comparison and confirming the transformation.

	Value			
y_0	11.97404			
\mathbf{A}_1	45.95723			
t_1	1.84248			
A_2	91.99347			
t_2	2.0472			
A_3	80.26619			
t ₃	2.25192			

Table SI-1. The exciton lifetime fitting result of 2D Ag_2SO_4 nanosheets.

Average lifetime ~ 2.06 ns

Fig. SI-3. Elemental mapping of a selected area on the sample: (a) Elemental mapping image of a selected area on the sample. (b) Ag mapping. (c) S mapping. (d) O mapping.

Fig. SI-4. TEM and AFM images of prepared 2D Ag₂SO₄ nanosheets.

Fig. SI-5. Measurement of the response and recovery time of the 2D Ag_2SO_4 based sensor upon exposure to NO_2 at the concentrations of a) 20, b) 40, c) 60, d) 80, e) 120 and d) 160 ppb.

Material	Method	Operating condition	Low detection limit (ppb)	Sensitivity	Ref.
				$(\Delta R/R)$ @	
			(11-)	(NO ₂ ppm)	
NbS ₂	CVD*	RT	241	28.32	
				(10 ppm)	1
WS ₂	LE*	RT	-	29%	
				(10 ppm)	2
WS_2	Hvdrothermal	RT	0.1	84.7%	
L	5		-	(10 ppm)	3
MoS_2	ME*	RT	-	41.7 (200 ppm)	4
				(200 PP)	
SnS_2	Hydrothermal	RT/ Green light	38	10.8	
				(8 ppm)	5
InS_O_/In ₂ S ₂	LPE	RT/ Blue light	0 363	2 75%	
mo _x o _y , m ₂ o ₃		ICI/ Diae inglic	0.000	(0.44 ppm)	6
PdSO ₄	LPE	RT/ Blue light	1.84	3.28%	7
				(0.10 ppm)	,
Ag_2SO_4	LPE	RT/ Blue light	0.458	8.39%	This
				(0.16 ppm)	work

Table SI-2. Comparison of gas sensing performances of previously reported NO_2 gas sensors based on metal sulphide and oxysulphide nanostructure at room temperature.

* CVD: Chemical vapor deposition. LE: Liquid exfoliation. ME: Mechanical exfoliation

Fig. SI-6. a) Cyclic response of the 2D Ag_2SO_4 based sensor towards 80 ppb of NO_2 for 3 cycles. b) The long-term stability of the sensor towards NO_2 gas at a concentration of 80 ppb in the balance of N_2 gas at room temperature under blue light illumination.

Fig. SI-7. Reproducibility test of the prepared Ag_2SO_4 -based sensors towards NO_2 gas at the concentration of 80 ppb in the balance of N_2 gas. Inset: Ag_2SO_4 -based sensors prepared on different days.

References

- Y. Kim, K. C. Kwon, S. Kang, C. Kim, T. H. Kim, S.-P. Hong, S. Y. Park, J. M. Suh, M.-J.
 Choi and S. Han, ACS sensors, 2019, 4, 2395-2402.
- D. Simon Patrick, P. Bharathi, M. Krishna Mohan, C. Muthamizchelvan, S. Harish and M. Navaneethan, *Journal of Materials Science: Materials in Electronics*, 2022, **33**, 9235-9245.
- 3. T. Xu, Y. Liu, Y. Pei, Y. Chen, Z. Jiang, Z. Shi, J. Xu, D. Wu, Y. Tian and X. Li, Sensors and Actuators B: Chemical, 2018, **259**, 789-796.
- W. Li, Y. Zhang, X. Long, J. Cao, X. Xin, X. Guan, J. Peng and X. Zheng, Sensors, 2019, 19, 2123.
- D. Gu, X. Wang, W. Liu, X. Li, S. Lin, J. Wang, M. N. Rumyantseva, A. M. Gaskov and S.
 A. Akbar, Sensors and Actuators B: Chemical, 2020, 305, 127455.
- K. Xu, B. Y. Zhang, M. Mohiuddin, N. Ha, X. Wen, C. Zhou, Y. Li, G. Ren, H. Zhang, A. Zavabeti and J. Z. Ou, *Nano Today*, 2021, **37**, 101096.
- T. Alkathiri, K. Xu, B. Y. Zhang, M. W. Khan, A. Jannat, N. Syed, A. F. Almutairi, N. Ha,
 M. M. Alsaif, N. Pillai, Z. Li, T. Daeneke and J. Z. Ou, *Small Science*, 2022, 2, 2100097.