Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

EXAFS evidence for the spin-phonon coupling in monoclinic PrNiO₃ nickelate perovskite

J. E. Rodrigues ^{a,*}, A. D. Rosa ^a, J. López-Sánchez ^{b,c}, E. Sebastiani-Tofano ^{b,c}, N. M. Nemes ^d, J. L. Martínez ^b, J. A. Alonso ^{b,*}, O. Mathon ^a

- ^{a.} European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France.
- ^{b.} Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, E-28049 Madrid, Spain.
- ^{c.} Spanish CRG BM25-SpLine at the ESRF, 71 Avenue des Martyrs, 38000 Grenoble, France.
- ^{d.} Departamento Física de Materiales, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
- * Correspondence: rodrigues.joaoelias@gmail.com; ja.alonso@icmm.csic.es.

EXAFS model for PrNiO₃ nickelate

Structural aspects from XRD

PrNiO₃ nickelate is described at 10 K by the monoclinic space-group P_{1}/n , being characterized by the charge disproportionation between Ni1 (Ni^{+3+δ}) and Ni2 (Ni^{+3-δ}) sites, with the factor $\delta \neq 0$ (see Fig. S1). When we evaluated the distances Ni–O, three sets of pair-distances for both Ni1 and Ni2 elucidating the occurrence of two octahedra with average distances $\langle Ni1-O \rangle = 1.912(7)$ Å and $\langle Ni2-O \rangle = 1.983(7)$ Å could be discriminated from high-resolution synchrotron X-ray diffraction. ¹ The same data acquisition protocol was repeated at 295 K to characterize the orthorhombic *Pbnm* phase, showing instead three sets of Ni–O distances for the single Ni within the structure (average distance $\langle Ni-O \rangle = 1.942(3)$ Å), due to the loss of the charge disproportionation above T = 130 K. In addition, the octahedral unit [NiO₆] does not have appreciated distortion, being more symmetric in the orthorhombic phase when compared to those from the monoclinic phase.

Monoclinic unit-cell at 10 K

Monoclinic $P_{2_1/n}$			
Ni1–O distance (<i>R</i> , Å)		Ni2–O distance (<i>R</i> , Å)	
$2 \times Ni1-O1$	1.875(7) Å	$2 \times Ni2-O1$	2.011(7) Å
$2 \times Ni1-O2$	1.974(7) Å	$2 \times Ni2-O2$	1.947(7) Å
$2 \times Ni1-O3$	1.887(7) Å	$2 \times Ni2-O3$	1.990(7) Å
<ni1-0></ni1-0>	1.912(7) Å	<ni2–o></ni2–o>	1.983(7) Å

Fig. S1: Representation of the monoclinic unit cell of $PrNiO_3$ at 10 K together with the list of pair-units Ni–O extracted from the structural refinement ¹.

Orthorhombic unit-cell at 295 K

Fig. S2: Representation of the orthorhombic unit cell of PrNiO₃ at 295 K together with the list of pair-units Ni–O extracted from the structural refinement ¹.

Building the EXAFS model

To build our EXAFS model at 10 K (for the monoclinic phase), we have observed that 6 paths of Ni–O (multiplicity of 2 for each one) are needed for a precise structural description; however, such a description is not reasonable for a conventional EXAFS analysis in view of few factors, including spectral resolution, and available windows in *k* and *R* spaces. To overcome it, we considered that among the 6 paths (CN = 2 for each), we may define two sets of Ni–O distances, namely: Ni_a–O_{1a} \approx 1.89 Å (CN = 2) and Ni_a–O_{2a} \approx 1.97 Å (CN = 4) (see Table above for monoclinic unit-cell). We named both paths as Ni_a–O_{1a} and Ni_a–O_{2a} (see the main text), respectively. The definition of the coordination numbers (CN) was based on the distribution of pair-distances, e.g. the monoclinic phase has 4 pairs with *R* < 1.89 Å, while 8 pairs have *R* > 1.89 Å from the 12 pairs available. Then, after the insulator-metal transition, one may expect that both paths became equal with CN = 6, which is the feature of the orthorhombic phase *Pbnm*. Fig. S3 shows a sketch of the local structure around the Ni absorber for both monoclinic and orthorhombic phases, which culminated in the EXAFS model used here.

Fig. S3: Sketches of the local structure of PrNiO₃ nickelate in both monoclinic and orthorhombic crystal structures, highlighting the all the pair-units Ni–O. From this, an average octahedral unit was used as initial parameters to describe the EXAFS oscillations in PrNiO₃.

References

¹ J. E. Rodrigues, A. D. Rosa, G. Garbarino, C. Dejoie, Y. Mijiti, T. Irifune, N. M. Nemes J. L. Martínez, M. Mezouar, J. A. Alonso, O. Mathon. *In preparation*, 2022.