Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Electronic supplementary information

Tunable concentration/excitation-dependent deep-red and white light emission in a single-phase Eu²⁺-activated Sc-based oxide phosphors for blue/UV-LEDs

Shuai Huang,^{a,b} Mengmeng Shang,* ^a Minliang Deng,^a Yu Yan,^a Peipei Dang^c and Jun Lin* ^c

^aKey Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, School of Material Science and Engineering, Shandong University, 17923 Jingshi Road, Jinan 250061, P. R. China. E-mail: mmshang@sdu.edu.cn

^bAddress College of Materials Science and Engineering, Nanchang University, Nanchang 330031, P. R. China ^cState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. E-mail: jlin@ciac.ac.cn

Cation	Polyhedron	n	r	n*r
Sr	Sr1O ₆	6	1.18	7.08
	Sr2O ₉	9	1.31	11.79
Sc	Sr3O ₁₂	12	1.44	17.28
	ScO_6	6	0.745	4.47

Fig. S1 Dependence of the offset (Δ) and cell volume (V) on the x value.

Fig. S2 (a) PL spectra of $Sr_3Sc_4O_9$: 0.06Eu sample upon 300nm excitation. (b) Quantum efficiency spectra of $Sr_3Sc_4O_9$:0.006Eu and A-Sr_3Sc_4O_9:0.006Eu.

Fig. S3 The normalized Eu-3d XPS spectra of $Sr_3Sc_4O_9$:xEu (x = 0.006, 0.01, 0.02).

The high-resolution XPS spectra at the Eu 3d of $Sr_3Sc_4O_9$:xEu (x = 0.006, 0.01 and 0.02) phosphors were applied to compare the ratio changing of Eu²⁺ and Eu³⁺. The shapes and binding energies are in good agreement with the characteristic binding peaks of Eu³⁺ $3d_{5/2}$ (1135 eV) and Eu²⁺ $3d_{3/2}$ (1155 eV) and $3d_{5/2}$ (1126 eV), indicating that Eu³⁺ and Eu²⁺ coexist. A semiquantitative analysis of the integrated peak area can provide the concentration ratio of Eu²⁺/Eu³⁺. The concentrations of Eu²⁺ ion for $Sr_3Sc_4O_9$:xEu (x = 0.006, 0.01 and 0.02) phosphors are calculated to be 89%, 84% and 82%, respectively.

Fig. S4 The decay curves of $Sr_3Sc_4O_9$: 0.01Eu at different monitoring wavelengths.

Fig. S5 Normalized PL spectra of $Sr_3Sc_4O_9$: xEu samples upon 350nm excitation.

Fig. S6 Eu^{3+} peak intensities (a) and Eu^{3+} intensities ratio to the integrated PL intensities (b) of $Sr_3Sc_4O_9$: 0.01Eu as a function of temperature.

Fig. S7 The plot of $In[I_0/I(T) - 1]$ vs. 1/T for $Eu^{2+}(a)$ and $Eu^{3+}(b)$ emission in $Sr_3Sc_4O_9$ host.

Fig. S8 The spectral profile (a), CIE coordinates diagram (b) and CIE coordinates (c) of $Sr_3Sc_4O_9$: 0.01Eu sample (upon 350 nm excitation) as a function of temperature.